This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) Avoid ax-un . (Revised by BTernaryTau, 25-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2sn | |- ( ( A e. C /\ B e. D ) -> { A } ~~ { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | |- { <. A , B >. } e. _V |
|
| 2 | f1osng | |- ( ( A e. C /\ B e. D ) -> { <. A , B >. } : { A } -1-1-onto-> { B } ) |
|
| 3 | f1oeq1 | |- ( f = { <. A , B >. } -> ( f : { A } -1-1-onto-> { B } <-> { <. A , B >. } : { A } -1-1-onto-> { B } ) ) |
|
| 4 | 3 | spcegv | |- ( { <. A , B >. } e. _V -> ( { <. A , B >. } : { A } -1-1-onto-> { B } -> E. f f : { A } -1-1-onto-> { B } ) ) |
| 5 | 1 2 4 | mpsyl | |- ( ( A e. C /\ B e. D ) -> E. f f : { A } -1-1-onto-> { B } ) |
| 6 | snex | |- { A } e. _V |
|
| 7 | snex | |- { B } e. _V |
|
| 8 | breng | |- ( ( { A } e. _V /\ { B } e. _V ) -> ( { A } ~~ { B } <-> E. f f : { A } -1-1-onto-> { B } ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( { A } ~~ { B } <-> E. f f : { A } -1-1-onto-> { B } ) |
| 10 | 5 9 | sylibr | |- ( ( A e. C /\ B e. D ) -> { A } ~~ { B } ) |