This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 ) between an infinite subset of _om and _om itself. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem22.b | |- C = ( i e. _om |-> ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
|
| Assertion | fin23lem22 | |- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -1-1-onto-> S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem22.b | |- C = ( i e. _om |-> ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
|
| 2 | fin23lem23 | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> E! j e. S ( j i^i S ) ~~ i ) |
|
| 3 | riotacl | |- ( E! j e. S ( j i^i S ) ~~ i -> ( iota_ j e. S ( j i^i S ) ~~ i ) e. S ) |
|
| 4 | 2 3 | syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ i e. _om ) -> ( iota_ j e. S ( j i^i S ) ~~ i ) e. S ) |
| 5 | simpll | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. S ) -> S C_ _om ) |
|
| 6 | simpr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. S ) -> a e. S ) |
|
| 7 | 5 6 | sseldd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. S ) -> a e. _om ) |
| 8 | nnfi | |- ( a e. _om -> a e. Fin ) |
|
| 9 | infi | |- ( a e. Fin -> ( a i^i S ) e. Fin ) |
|
| 10 | ficardom | |- ( ( a i^i S ) e. Fin -> ( card ` ( a i^i S ) ) e. _om ) |
|
| 11 | 7 8 9 10 | 4syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ a e. S ) -> ( card ` ( a i^i S ) ) e. _om ) |
| 12 | cardnn | |- ( i e. _om -> ( card ` i ) = i ) |
|
| 13 | 12 | eqcomd | |- ( i e. _om -> i = ( card ` i ) ) |
| 14 | 13 | eqeq1d | |- ( i e. _om -> ( i = ( card ` ( a i^i S ) ) <-> ( card ` i ) = ( card ` ( a i^i S ) ) ) ) |
| 15 | eqcom | |- ( ( card ` i ) = ( card ` ( a i^i S ) ) <-> ( card ` ( a i^i S ) ) = ( card ` i ) ) |
|
| 16 | 14 15 | bitrdi | |- ( i e. _om -> ( i = ( card ` ( a i^i S ) ) <-> ( card ` ( a i^i S ) ) = ( card ` i ) ) ) |
| 17 | 16 | ad2antrl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> ( i = ( card ` ( a i^i S ) ) <-> ( card ` ( a i^i S ) ) = ( card ` i ) ) ) |
| 18 | simpll | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> S C_ _om ) |
|
| 19 | simprr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> a e. S ) |
|
| 20 | 18 19 | sseldd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> a e. _om ) |
| 21 | nnon | |- ( a e. _om -> a e. On ) |
|
| 22 | onenon | |- ( a e. On -> a e. dom card ) |
|
| 23 | 20 21 22 | 3syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> a e. dom card ) |
| 24 | inss1 | |- ( a i^i S ) C_ a |
|
| 25 | ssnum | |- ( ( a e. dom card /\ ( a i^i S ) C_ a ) -> ( a i^i S ) e. dom card ) |
|
| 26 | 23 24 25 | sylancl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> ( a i^i S ) e. dom card ) |
| 27 | nnon | |- ( i e. _om -> i e. On ) |
|
| 28 | 27 | ad2antrl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> i e. On ) |
| 29 | onenon | |- ( i e. On -> i e. dom card ) |
|
| 30 | 28 29 | syl | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> i e. dom card ) |
| 31 | carden2 | |- ( ( ( a i^i S ) e. dom card /\ i e. dom card ) -> ( ( card ` ( a i^i S ) ) = ( card ` i ) <-> ( a i^i S ) ~~ i ) ) |
|
| 32 | 26 30 31 | syl2anc | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> ( ( card ` ( a i^i S ) ) = ( card ` i ) <-> ( a i^i S ) ~~ i ) ) |
| 33 | 2 | adantrr | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> E! j e. S ( j i^i S ) ~~ i ) |
| 34 | ineq1 | |- ( j = a -> ( j i^i S ) = ( a i^i S ) ) |
|
| 35 | 34 | breq1d | |- ( j = a -> ( ( j i^i S ) ~~ i <-> ( a i^i S ) ~~ i ) ) |
| 36 | 35 | riota2 | |- ( ( a e. S /\ E! j e. S ( j i^i S ) ~~ i ) -> ( ( a i^i S ) ~~ i <-> ( iota_ j e. S ( j i^i S ) ~~ i ) = a ) ) |
| 37 | 19 33 36 | syl2anc | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> ( ( a i^i S ) ~~ i <-> ( iota_ j e. S ( j i^i S ) ~~ i ) = a ) ) |
| 38 | eqcom | |- ( ( iota_ j e. S ( j i^i S ) ~~ i ) = a <-> a = ( iota_ j e. S ( j i^i S ) ~~ i ) ) |
|
| 39 | 37 38 | bitrdi | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> ( ( a i^i S ) ~~ i <-> a = ( iota_ j e. S ( j i^i S ) ~~ i ) ) ) |
| 40 | 17 32 39 | 3bitrd | |- ( ( ( S C_ _om /\ -. S e. Fin ) /\ ( i e. _om /\ a e. S ) ) -> ( i = ( card ` ( a i^i S ) ) <-> a = ( iota_ j e. S ( j i^i S ) ~~ i ) ) ) |
| 41 | 1 4 11 40 | f1o2d | |- ( ( S C_ _om /\ -. S e. Fin ) -> C : _om -1-1-onto-> S ) |