This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation with a base greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expmulnbnd | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | simp1 | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> A e. RR ) |
|
| 3 | remulcl | |- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 2 x. A ) e. RR ) |
| 5 | simp3 | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 < B ) |
|
| 6 | 1re | |- 1 e. RR |
|
| 7 | simp2 | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> B e. RR ) |
|
| 8 | difrp | |- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> ( B - 1 ) e. RR+ ) ) |
|
| 9 | 6 7 8 | sylancr | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 < B <-> ( B - 1 ) e. RR+ ) ) |
| 10 | 5 9 | mpbid | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B - 1 ) e. RR+ ) |
| 11 | 4 10 | rerpdivcld | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( ( 2 x. A ) / ( B - 1 ) ) e. RR ) |
| 12 | expnbnd | |- ( ( ( ( 2 x. A ) / ( B - 1 ) ) e. RR /\ B e. RR /\ 1 < B ) -> E. n e. NN ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) |
|
| 13 | 11 7 5 12 | syl3anc | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. n e. NN ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) |
| 14 | 2nn0 | |- 2 e. NN0 |
|
| 15 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 16 | 15 | ad2antrl | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> n e. NN0 ) |
| 17 | nn0mulcl | |- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
|
| 18 | 14 16 17 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> ( 2 x. n ) e. NN0 ) |
| 19 | 2 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> A e. RR ) |
| 20 | 2nn | |- 2 e. NN |
|
| 21 | simprl | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> n e. NN ) |
|
| 22 | nnmulcl | |- ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
|
| 23 | 20 21 22 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> ( 2 x. n ) e. NN ) |
| 24 | eluznn | |- ( ( ( 2 x. n ) e. NN /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. NN ) |
|
| 25 | 23 24 | sylan | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. NN ) |
| 26 | 25 | nnred | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. RR ) |
| 27 | 19 26 | remulcld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) e. RR ) |
| 28 | 0re | |- 0 e. RR |
|
| 29 | ifcl | |- ( ( A e. RR /\ 0 e. RR ) -> if ( 0 <_ A , A , 0 ) e. RR ) |
|
| 30 | 19 28 29 | sylancl | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> if ( 0 <_ A , A , 0 ) e. RR ) |
| 31 | remulcl | |- ( ( 2 e. RR /\ if ( 0 <_ A , A , 0 ) e. RR ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) e. RR ) |
|
| 32 | 1 30 31 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) e. RR ) |
| 33 | simplrl | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. NN ) |
|
| 34 | 33 | nnred | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. RR ) |
| 35 | 26 34 | resubcld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. RR ) |
| 36 | 32 35 | remulcld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) e. RR ) |
| 37 | 7 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> B e. RR ) |
| 38 | 25 | nnnn0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. NN0 ) |
| 39 | reexpcl | |- ( ( B e. RR /\ k e. NN0 ) -> ( B ^ k ) e. RR ) |
|
| 40 | 37 38 39 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ k ) e. RR ) |
| 41 | remulcl | |- ( ( 2 e. RR /\ ( k - n ) e. RR ) -> ( 2 x. ( k - n ) ) e. RR ) |
|
| 42 | 1 35 41 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. ( k - n ) ) e. RR ) |
| 43 | 38 | nn0ge0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 <_ k ) |
| 44 | max1 | |- ( ( 0 e. RR /\ A e. RR ) -> 0 <_ if ( 0 <_ A , A , 0 ) ) |
|
| 45 | 28 19 44 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 <_ if ( 0 <_ A , A , 0 ) ) |
| 46 | remulcl | |- ( ( 2 e. RR /\ n e. RR ) -> ( 2 x. n ) e. RR ) |
|
| 47 | 1 34 46 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. n ) e. RR ) |
| 48 | eluzle | |- ( k e. ( ZZ>= ` ( 2 x. n ) ) -> ( 2 x. n ) <_ k ) |
|
| 49 | 48 | adantl | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. n ) <_ k ) |
| 50 | 47 26 26 49 | leadd2dd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k + ( 2 x. n ) ) <_ ( k + k ) ) |
| 51 | 26 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. CC ) |
| 52 | 51 | 2timesd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. k ) = ( k + k ) ) |
| 53 | 50 52 | breqtrrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k + ( 2 x. n ) ) <_ ( 2 x. k ) ) |
| 54 | remulcl | |- ( ( 2 e. RR /\ k e. RR ) -> ( 2 x. k ) e. RR ) |
|
| 55 | 1 26 54 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. k ) e. RR ) |
| 56 | leaddsub | |- ( ( k e. RR /\ ( 2 x. n ) e. RR /\ ( 2 x. k ) e. RR ) -> ( ( k + ( 2 x. n ) ) <_ ( 2 x. k ) <-> k <_ ( ( 2 x. k ) - ( 2 x. n ) ) ) ) |
|
| 57 | 26 47 55 56 | syl3anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( k + ( 2 x. n ) ) <_ ( 2 x. k ) <-> k <_ ( ( 2 x. k ) - ( 2 x. n ) ) ) ) |
| 58 | 53 57 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k <_ ( ( 2 x. k ) - ( 2 x. n ) ) ) |
| 59 | 2cnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 2 e. CC ) |
|
| 60 | 34 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. CC ) |
| 61 | 59 51 60 | subdid | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
| 62 | 58 61 | breqtrrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k <_ ( 2 x. ( k - n ) ) ) |
| 63 | max2 | |- ( ( 0 e. RR /\ A e. RR ) -> A <_ if ( 0 <_ A , A , 0 ) ) |
|
| 64 | 28 19 63 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> A <_ if ( 0 <_ A , A , 0 ) ) |
| 65 | 26 42 19 30 43 45 62 64 | lemul12bd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k x. A ) <_ ( ( 2 x. ( k - n ) ) x. if ( 0 <_ A , A , 0 ) ) ) |
| 66 | 19 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> A e. CC ) |
| 67 | 66 51 | mulcomd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) = ( k x. A ) ) |
| 68 | 30 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> if ( 0 <_ A , A , 0 ) e. CC ) |
| 69 | 35 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. CC ) |
| 70 | 59 68 69 | mul32d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) = ( ( 2 x. ( k - n ) ) x. if ( 0 <_ A , A , 0 ) ) ) |
| 71 | 65 67 70 | 3brtr4d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) <_ ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) ) |
| 72 | 10 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B - 1 ) e. RR+ ) |
| 73 | 72 | rpred | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B - 1 ) e. RR ) |
| 74 | 73 35 | remulcld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) e. RR ) |
| 75 | 33 | nnnn0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. NN0 ) |
| 76 | reexpcl | |- ( ( B e. RR /\ n e. NN0 ) -> ( B ^ n ) e. RR ) |
|
| 77 | 37 75 76 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ n ) e. RR ) |
| 78 | 74 77 | remulcld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) e. RR ) |
| 79 | simplrr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) |
|
| 80 | 1 19 3 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. A ) e. RR ) |
| 81 | 80 77 72 | ltdivmuld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) <-> ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) ) ) |
| 82 | 79 81 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) ) |
| 83 | 5 | ad2antrr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 1 < B ) |
| 84 | posdif | |- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
|
| 85 | 6 37 84 | sylancr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
| 86 | 83 85 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( B - 1 ) ) |
| 87 | 33 | nnzd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. ZZ ) |
| 88 | 28 | a1i | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 e. RR ) |
| 89 | 6 | a1i | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 1 e. RR ) |
| 90 | 0lt1 | |- 0 < 1 |
|
| 91 | 90 | a1i | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < 1 ) |
| 92 | 88 89 37 91 83 | lttrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < B ) |
| 93 | expgt0 | |- ( ( B e. RR /\ n e. ZZ /\ 0 < B ) -> 0 < ( B ^ n ) ) |
|
| 94 | 37 87 92 93 | syl3anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( B ^ n ) ) |
| 95 | 73 77 86 94 | mulgt0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( ( B - 1 ) x. ( B ^ n ) ) ) |
| 96 | oveq2 | |- ( A = if ( 0 <_ A , A , 0 ) -> ( 2 x. A ) = ( 2 x. if ( 0 <_ A , A , 0 ) ) ) |
|
| 97 | 96 | breq1d | |- ( A = if ( 0 <_ A , A , 0 ) -> ( ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) ) |
| 98 | 2t0e0 | |- ( 2 x. 0 ) = 0 |
|
| 99 | oveq2 | |- ( 0 = if ( 0 <_ A , A , 0 ) -> ( 2 x. 0 ) = ( 2 x. if ( 0 <_ A , A , 0 ) ) ) |
|
| 100 | 98 99 | eqtr3id | |- ( 0 = if ( 0 <_ A , A , 0 ) -> 0 = ( 2 x. if ( 0 <_ A , A , 0 ) ) ) |
| 101 | 100 | breq1d | |- ( 0 = if ( 0 <_ A , A , 0 ) -> ( 0 < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) ) |
| 102 | 97 101 | ifboth | |- ( ( ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) /\ 0 < ( ( B - 1 ) x. ( B ^ n ) ) ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) |
| 103 | 82 95 102 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) |
| 104 | 73 77 | remulcld | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( B ^ n ) ) e. RR ) |
| 105 | simpr | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. ( ZZ>= ` ( 2 x. n ) ) ) |
|
| 106 | 60 | 2timesd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. n ) = ( n + n ) ) |
| 107 | 106 | fveq2d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ZZ>= ` ( 2 x. n ) ) = ( ZZ>= ` ( n + n ) ) ) |
| 108 | 105 107 | eleqtrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. ( ZZ>= ` ( n + n ) ) ) |
| 109 | eluzsub | |- ( ( n e. ZZ /\ n e. ZZ /\ k e. ( ZZ>= ` ( n + n ) ) ) -> ( k - n ) e. ( ZZ>= ` n ) ) |
|
| 110 | 87 87 108 109 | syl3anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. ( ZZ>= ` n ) ) |
| 111 | eluznn | |- ( ( n e. NN /\ ( k - n ) e. ( ZZ>= ` n ) ) -> ( k - n ) e. NN ) |
|
| 112 | 33 110 111 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. NN ) |
| 113 | 112 | nngt0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( k - n ) ) |
| 114 | ltmul1 | |- ( ( ( 2 x. if ( 0 <_ A , A , 0 ) ) e. RR /\ ( ( B - 1 ) x. ( B ^ n ) ) e. RR /\ ( ( k - n ) e. RR /\ 0 < ( k - n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) ) ) |
|
| 115 | 32 104 35 113 114 | syl112anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) ) ) |
| 116 | 103 115 | mpbid | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) ) |
| 117 | 73 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B - 1 ) e. CC ) |
| 118 | 77 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ n ) e. CC ) |
| 119 | 117 118 69 | mul32d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) = ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) ) |
| 120 | 116 119 | breqtrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) ) |
| 121 | peano2re | |- ( ( ( B - 1 ) x. ( k - n ) ) e. RR -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) e. RR ) |
|
| 122 | 74 121 | syl | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) e. RR ) |
| 123 | 112 | nnnn0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. NN0 ) |
| 124 | reexpcl | |- ( ( B e. RR /\ ( k - n ) e. NN0 ) -> ( B ^ ( k - n ) ) e. RR ) |
|
| 125 | 37 123 124 | syl2anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ ( k - n ) ) e. RR ) |
| 126 | 74 | ltp1d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) ) |
| 127 | 88 37 92 | ltled | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 <_ B ) |
| 128 | bernneq2 | |- ( ( B e. RR /\ ( k - n ) e. NN0 /\ 0 <_ B ) -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) <_ ( B ^ ( k - n ) ) ) |
|
| 129 | 37 123 127 128 | syl3anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) <_ ( B ^ ( k - n ) ) ) |
| 130 | 74 122 125 126 129 | ltletrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) < ( B ^ ( k - n ) ) ) |
| 131 | 37 | recnd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> B e. CC ) |
| 132 | 92 | gt0ne0d | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> B =/= 0 ) |
| 133 | eluzelz | |- ( k e. ( ZZ>= ` ( 2 x. n ) ) -> k e. ZZ ) |
|
| 134 | 133 | adantl | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. ZZ ) |
| 135 | expsub | |- ( ( ( B e. CC /\ B =/= 0 ) /\ ( k e. ZZ /\ n e. ZZ ) ) -> ( B ^ ( k - n ) ) = ( ( B ^ k ) / ( B ^ n ) ) ) |
|
| 136 | 131 132 134 87 135 | syl22anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ ( k - n ) ) = ( ( B ^ k ) / ( B ^ n ) ) ) |
| 137 | 130 136 | breqtrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) < ( ( B ^ k ) / ( B ^ n ) ) ) |
| 138 | ltmuldiv | |- ( ( ( ( B - 1 ) x. ( k - n ) ) e. RR /\ ( B ^ k ) e. RR /\ ( ( B ^ n ) e. RR /\ 0 < ( B ^ n ) ) ) -> ( ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) < ( B ^ k ) <-> ( ( B - 1 ) x. ( k - n ) ) < ( ( B ^ k ) / ( B ^ n ) ) ) ) |
|
| 139 | 74 40 77 94 138 | syl112anc | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) < ( B ^ k ) <-> ( ( B - 1 ) x. ( k - n ) ) < ( ( B ^ k ) / ( B ^ n ) ) ) ) |
| 140 | 137 139 | mpbird | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) < ( B ^ k ) ) |
| 141 | 36 78 40 120 140 | lttrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( B ^ k ) ) |
| 142 | 27 36 40 71 141 | lelttrd | |- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) < ( B ^ k ) ) |
| 143 | 142 | ralrimiva | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> A. k e. ( ZZ>= ` ( 2 x. n ) ) ( A x. k ) < ( B ^ k ) ) |
| 144 | fveq2 | |- ( j = ( 2 x. n ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( 2 x. n ) ) ) |
|
| 145 | 144 | raleqdv | |- ( j = ( 2 x. n ) -> ( A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) <-> A. k e. ( ZZ>= ` ( 2 x. n ) ) ( A x. k ) < ( B ^ k ) ) ) |
| 146 | 145 | rspcev | |- ( ( ( 2 x. n ) e. NN0 /\ A. k e. ( ZZ>= ` ( 2 x. n ) ) ( A x. k ) < ( B ^ k ) ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |
| 147 | 18 143 146 | syl2anc | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |
| 148 | 13 147 | rexlimddv | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |