This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponent subtraction law for integer exponentiation. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expsub | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 2 | expaddz | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ -u N e. ZZ ) ) -> ( A ^ ( M + -u N ) ) = ( ( A ^ M ) x. ( A ^ -u N ) ) ) |
|
| 3 | 1 2 | sylanr2 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M + -u N ) ) = ( ( A ^ M ) x. ( A ^ -u N ) ) ) |
| 4 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 5 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 6 | negsub | |- ( ( M e. CC /\ N e. CC ) -> ( M + -u N ) = ( M - N ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + -u N ) = ( M - N ) ) |
| 8 | 7 | adantl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M + -u N ) = ( M - N ) ) |
| 9 | 8 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M + -u N ) ) = ( A ^ ( M - N ) ) ) |
| 10 | expnegz | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
|
| 11 | 10 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. ZZ ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 12 | 11 | adantrl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 13 | 12 | oveq2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A ^ M ) x. ( A ^ -u N ) ) = ( ( A ^ M ) x. ( 1 / ( A ^ N ) ) ) ) |
| 14 | expclz | |- ( ( A e. CC /\ A =/= 0 /\ M e. ZZ ) -> ( A ^ M ) e. CC ) |
|
| 15 | 14 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( A ^ M ) e. CC ) |
| 16 | 15 | adantrr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ M ) e. CC ) |
| 17 | expclz | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC ) |
|
| 18 | 17 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. ZZ ) -> ( A ^ N ) e. CC ) |
| 19 | 18 | adantrl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ N ) e. CC ) |
| 20 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) =/= 0 ) |
|
| 21 | 20 | 3expa | |- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. ZZ ) -> ( A ^ N ) =/= 0 ) |
| 22 | 21 | adantrl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ N ) =/= 0 ) |
| 23 | 16 19 22 | divrecd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A ^ M ) / ( A ^ N ) ) = ( ( A ^ M ) x. ( 1 / ( A ^ N ) ) ) ) |
| 24 | 13 23 | eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( A ^ M ) x. ( A ^ -u N ) ) = ( ( A ^ M ) / ( A ^ N ) ) ) |
| 25 | 3 9 24 | 3eqtr3d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) ) |