This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the K th digit in the decimal (when base B = 1 0 ) expansion of a number A . K = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 25-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | digit2 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 2 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 3 | reexpcl | |- ( ( B e. RR /\ K e. NN0 ) -> ( B ^ K ) e. RR ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. RR ) |
| 5 | remulcl | |- ( ( ( B ^ K ) e. RR /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) |
|
| 6 | 4 5 | stoic3 | |- ( ( B e. NN /\ K e. NN /\ A e. RR ) -> ( ( B ^ K ) x. A ) e. RR ) |
| 7 | 6 | 3comr | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( B ^ K ) x. A ) e. RR ) |
| 8 | reflcl | |- ( ( ( B ^ K ) x. A ) e. RR -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( B ^ K ) x. A ) ) e. RR ) |
| 10 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 11 | 10 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> B e. RR+ ) |
| 12 | modval | |- ( ( ( |_ ` ( ( B ^ K ) x. A ) ) e. RR /\ B e. RR+ ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) ) |
|
| 13 | 9 11 12 | syl2anc | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) ) |
| 14 | simp2 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> B e. NN ) |
|
| 15 | fldiv | |- ( ( ( ( B ^ K ) x. A ) e. RR /\ B e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) ) |
|
| 16 | 7 14 15 | syl2anc | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) ) |
| 17 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 18 | expcl | |- ( ( B e. CC /\ K e. NN0 ) -> ( B ^ K ) e. CC ) |
|
| 19 | 17 2 18 | syl2an | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ K ) e. CC ) |
| 20 | 19 | 3adant1 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B ^ K ) e. CC ) |
| 21 | recn | |- ( A e. RR -> A e. CC ) |
|
| 22 | 21 | 3ad2ant1 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> A e. CC ) |
| 23 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 24 | 17 23 | jca | |- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 25 | 24 | 3ad2ant2 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B e. CC /\ B =/= 0 ) ) |
| 26 | div23 | |- ( ( ( B ^ K ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( ( B ^ K ) / B ) x. A ) ) |
|
| 27 | 20 22 25 26 | syl3anc | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( ( B ^ K ) / B ) x. A ) ) |
| 28 | nnz | |- ( K e. NN -> K e. ZZ ) |
|
| 29 | expm1 | |- ( ( B e. CC /\ B =/= 0 /\ K e. ZZ ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) |
|
| 30 | 17 23 28 29 | syl2an3an | |- ( ( B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) |
| 31 | 30 | 3adant1 | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B ^ ( K - 1 ) ) = ( ( B ^ K ) / B ) ) |
| 32 | 31 | oveq1d | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( B ^ ( K - 1 ) ) x. A ) = ( ( ( B ^ K ) / B ) x. A ) ) |
| 33 | 27 32 | eqtr4d | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( ( B ^ K ) x. A ) / B ) = ( ( B ^ ( K - 1 ) ) x. A ) ) |
| 34 | 33 | fveq2d | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( ( B ^ K ) x. A ) / B ) ) = ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) |
| 35 | 16 34 | eqtrd | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) = ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) |
| 36 | 35 | oveq2d | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) = ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) |
| 37 | 36 | oveq2d | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( |_ ` ( ( B ^ K ) x. A ) ) / B ) ) ) ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |
| 38 | 13 37 | eqtrd | |- ( ( A e. RR /\ B e. NN /\ K e. NN ) -> ( ( |_ ` ( ( B ^ K ) x. A ) ) mod B ) = ( ( |_ ` ( ( B ^ K ) x. A ) ) - ( B x. ( |_ ` ( ( B ^ ( K - 1 ) ) x. A ) ) ) ) ) |