This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnbnd | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. k e. NN A < ( B ^ k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | |- 1 e. NN |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | lttr | |- ( ( A e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( A < 1 /\ 1 < B ) -> A < B ) ) |
|
| 4 | 2 3 | mp3an2 | |- ( ( A e. RR /\ B e. RR ) -> ( ( A < 1 /\ 1 < B ) -> A < B ) ) |
| 5 | 4 | exp4b | |- ( A e. RR -> ( B e. RR -> ( A < 1 -> ( 1 < B -> A < B ) ) ) ) |
| 6 | 5 | com34 | |- ( A e. RR -> ( B e. RR -> ( 1 < B -> ( A < 1 -> A < B ) ) ) ) |
| 7 | 6 | 3imp1 | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> A < B ) |
| 8 | recn | |- ( B e. RR -> B e. CC ) |
|
| 9 | exp1 | |- ( B e. CC -> ( B ^ 1 ) = B ) |
|
| 10 | 8 9 | syl | |- ( B e. RR -> ( B ^ 1 ) = B ) |
| 11 | 10 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B ^ 1 ) = B ) |
| 12 | 11 | adantr | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> ( B ^ 1 ) = B ) |
| 13 | 7 12 | breqtrrd | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> A < ( B ^ 1 ) ) |
| 14 | oveq2 | |- ( k = 1 -> ( B ^ k ) = ( B ^ 1 ) ) |
|
| 15 | 14 | breq2d | |- ( k = 1 -> ( A < ( B ^ k ) <-> A < ( B ^ 1 ) ) ) |
| 16 | 15 | rspcev | |- ( ( 1 e. NN /\ A < ( B ^ 1 ) ) -> E. k e. NN A < ( B ^ k ) ) |
| 17 | 1 13 16 | sylancr | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> E. k e. NN A < ( B ^ k ) ) |
| 18 | peano2rem | |- ( A e. RR -> ( A - 1 ) e. RR ) |
|
| 19 | 18 | adantr | |- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) e. RR ) |
| 20 | peano2rem | |- ( B e. RR -> ( B - 1 ) e. RR ) |
|
| 21 | 20 | adantr | |- ( ( B e. RR /\ 1 < B ) -> ( B - 1 ) e. RR ) |
| 22 | 21 | adantl | |- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) e. RR ) |
| 23 | posdif | |- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
|
| 24 | 2 23 | mpan | |- ( B e. RR -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
| 25 | 24 | biimpa | |- ( ( B e. RR /\ 1 < B ) -> 0 < ( B - 1 ) ) |
| 26 | 25 | gt0ne0d | |- ( ( B e. RR /\ 1 < B ) -> ( B - 1 ) =/= 0 ) |
| 27 | 26 | adantl | |- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) =/= 0 ) |
| 28 | 19 22 27 | redivcld | |- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) e. RR ) |
| 29 | 28 | adantll | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) e. RR ) |
| 30 | 18 | adantl | |- ( ( 1 <_ A /\ A e. RR ) -> ( A - 1 ) e. RR ) |
| 31 | subge0 | |- ( ( A e. RR /\ 1 e. RR ) -> ( 0 <_ ( A - 1 ) <-> 1 <_ A ) ) |
|
| 32 | 2 31 | mpan2 | |- ( A e. RR -> ( 0 <_ ( A - 1 ) <-> 1 <_ A ) ) |
| 33 | 32 | biimparc | |- ( ( 1 <_ A /\ A e. RR ) -> 0 <_ ( A - 1 ) ) |
| 34 | 30 33 | jca | |- ( ( 1 <_ A /\ A e. RR ) -> ( ( A - 1 ) e. RR /\ 0 <_ ( A - 1 ) ) ) |
| 35 | 21 25 | jca | |- ( ( B e. RR /\ 1 < B ) -> ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) |
| 36 | divge0 | |- ( ( ( ( A - 1 ) e. RR /\ 0 <_ ( A - 1 ) ) /\ ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) -> 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) |
|
| 37 | 34 35 36 | syl2an | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) |
| 38 | flge0nn0 | |- ( ( ( ( A - 1 ) / ( B - 1 ) ) e. RR /\ 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) -> ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 ) |
|
| 39 | 29 37 38 | syl2anc | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 ) |
| 40 | nn0p1nn | |- ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN ) |
|
| 41 | 39 40 | syl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN ) |
| 42 | simplr | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A e. RR ) |
|
| 43 | 21 | adantl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) e. RR ) |
| 44 | peano2nn0 | |- ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) |
|
| 45 | 39 44 | syl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) |
| 46 | 45 | nn0red | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. RR ) |
| 47 | 43 46 | remulcld | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
| 48 | peano2re | |- ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) e. RR ) |
|
| 49 | 47 48 | syl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) e. RR ) |
| 50 | simprl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> B e. RR ) |
|
| 51 | reexpcl | |- ( ( B e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) -> ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
|
| 52 | 50 45 51 | syl2anc | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
| 53 | flltp1 | |- ( ( ( A - 1 ) / ( B - 1 ) ) e. RR -> ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) |
|
| 54 | 29 53 | syl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) |
| 55 | 30 | adantr | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) e. RR ) |
| 56 | 25 | adantl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 < ( B - 1 ) ) |
| 57 | ltdivmul | |- ( ( ( A - 1 ) e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. RR /\ ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) -> ( ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) <-> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
|
| 58 | 55 46 43 56 57 | syl112anc | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) <-> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
| 59 | 54 58 | mpbid | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 60 | ltsubadd | |- ( ( A e. RR /\ 1 e. RR /\ ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
|
| 61 | 2 60 | mp3an2 | |- ( ( A e. RR /\ ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
| 62 | 42 47 61 | syl2anc | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
| 63 | 59 62 | mpbid | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) |
| 64 | 0lt1 | |- 0 < 1 |
|
| 65 | 0re | |- 0 e. RR |
|
| 66 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
|
| 67 | 65 2 66 | mp3an12 | |- ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
| 68 | 64 67 | mpani | |- ( B e. RR -> ( 1 < B -> 0 < B ) ) |
| 69 | ltle | |- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B -> 0 <_ B ) ) |
|
| 70 | 65 69 | mpan | |- ( B e. RR -> ( 0 < B -> 0 <_ B ) ) |
| 71 | 68 70 | syld | |- ( B e. RR -> ( 1 < B -> 0 <_ B ) ) |
| 72 | 71 | imp | |- ( ( B e. RR /\ 1 < B ) -> 0 <_ B ) |
| 73 | 72 | adantl | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 <_ B ) |
| 74 | bernneq2 | |- ( ( B e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 /\ 0 <_ B ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) <_ ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
|
| 75 | 50 45 73 74 | syl3anc | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) <_ ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 76 | 42 49 52 63 75 | ltletrd | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 77 | oveq2 | |- ( k = ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) -> ( B ^ k ) = ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
|
| 78 | 77 | breq2d | |- ( k = ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) -> ( A < ( B ^ k ) <-> A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
| 79 | 78 | rspcev | |- ( ( ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN /\ A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) -> E. k e. NN A < ( B ^ k ) ) |
| 80 | 41 76 79 | syl2anc | |- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> E. k e. NN A < ( B ^ k ) ) |
| 81 | 80 | exp43 | |- ( 1 <_ A -> ( A e. RR -> ( B e. RR -> ( 1 < B -> E. k e. NN A < ( B ^ k ) ) ) ) ) |
| 82 | 81 | com4l | |- ( A e. RR -> ( B e. RR -> ( 1 < B -> ( 1 <_ A -> E. k e. NN A < ( B ^ k ) ) ) ) ) |
| 83 | 82 | 3imp1 | |- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ 1 <_ A ) -> E. k e. NN A < ( B ^ k ) ) |
| 84 | simp1 | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> A e. RR ) |
|
| 85 | 1red | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 e. RR ) |
|
| 86 | 17 83 84 85 | ltlecasei | |- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. k e. NN A < ( B ^ k ) ) |