This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of Bernoulli's inequality bernneq . (Contributed by NM, 18-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bernneq2 | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> ( ( ( A - 1 ) x. N ) + 1 ) <_ ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2rem | |- ( A e. RR -> ( A - 1 ) e. RR ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> ( A - 1 ) e. RR ) |
| 3 | simp2 | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> N e. NN0 ) |
|
| 4 | df-neg | |- -u 1 = ( 0 - 1 ) |
|
| 5 | 0re | |- 0 e. RR |
|
| 6 | 1re | |- 1 e. RR |
|
| 7 | lesub1 | |- ( ( 0 e. RR /\ A e. RR /\ 1 e. RR ) -> ( 0 <_ A <-> ( 0 - 1 ) <_ ( A - 1 ) ) ) |
|
| 8 | 5 6 7 | mp3an13 | |- ( A e. RR -> ( 0 <_ A <-> ( 0 - 1 ) <_ ( A - 1 ) ) ) |
| 9 | 8 | biimpa | |- ( ( A e. RR /\ 0 <_ A ) -> ( 0 - 1 ) <_ ( A - 1 ) ) |
| 10 | 4 9 | eqbrtrid | |- ( ( A e. RR /\ 0 <_ A ) -> -u 1 <_ ( A - 1 ) ) |
| 11 | 10 | 3adant2 | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> -u 1 <_ ( A - 1 ) ) |
| 12 | bernneq | |- ( ( ( A - 1 ) e. RR /\ N e. NN0 /\ -u 1 <_ ( A - 1 ) ) -> ( 1 + ( ( A - 1 ) x. N ) ) <_ ( ( 1 + ( A - 1 ) ) ^ N ) ) |
|
| 13 | 2 3 11 12 | syl3anc | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> ( 1 + ( ( A - 1 ) x. N ) ) <_ ( ( 1 + ( A - 1 ) ) ^ N ) ) |
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | 1 | recnd | |- ( A e. RR -> ( A - 1 ) e. CC ) |
| 16 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 17 | mulcl | |- ( ( ( A - 1 ) e. CC /\ N e. CC ) -> ( ( A - 1 ) x. N ) e. CC ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( A e. RR /\ N e. NN0 ) -> ( ( A - 1 ) x. N ) e. CC ) |
| 19 | addcom | |- ( ( 1 e. CC /\ ( ( A - 1 ) x. N ) e. CC ) -> ( 1 + ( ( A - 1 ) x. N ) ) = ( ( ( A - 1 ) x. N ) + 1 ) ) |
|
| 20 | 14 18 19 | sylancr | |- ( ( A e. RR /\ N e. NN0 ) -> ( 1 + ( ( A - 1 ) x. N ) ) = ( ( ( A - 1 ) x. N ) + 1 ) ) |
| 21 | 20 | 3adant3 | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> ( 1 + ( ( A - 1 ) x. N ) ) = ( ( ( A - 1 ) x. N ) + 1 ) ) |
| 22 | recn | |- ( A e. RR -> A e. CC ) |
|
| 23 | pncan3 | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + ( A - 1 ) ) = A ) |
|
| 24 | 14 22 23 | sylancr | |- ( A e. RR -> ( 1 + ( A - 1 ) ) = A ) |
| 25 | 24 | oveq1d | |- ( A e. RR -> ( ( 1 + ( A - 1 ) ) ^ N ) = ( A ^ N ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> ( ( 1 + ( A - 1 ) ) ^ N ) = ( A ^ N ) ) |
| 27 | 13 21 26 | 3brtr3d | |- ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> ( ( ( A - 1 ) x. N ) + 1 ) <_ ( A ^ N ) ) |