This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integer exponentiation of a reciprocal. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exprec | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( 1 / A ) ^ N ) = ( 1 / ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expclz | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC ) |
|
| 2 | reccl | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
|
| 3 | 2 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( 1 / A ) e. CC ) |
| 4 | recne0 | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) =/= 0 ) |
|
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( 1 / A ) =/= 0 ) |
| 6 | simp3 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> N e. ZZ ) |
|
| 7 | expclz | |- ( ( ( 1 / A ) e. CC /\ ( 1 / A ) =/= 0 /\ N e. ZZ ) -> ( ( 1 / A ) ^ N ) e. CC ) |
|
| 8 | 3 5 6 7 | syl3anc | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( 1 / A ) ^ N ) e. CC ) |
| 9 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) =/= 0 ) |
|
| 10 | simp1 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> A e. CC ) |
|
| 11 | simp2 | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> A =/= 0 ) |
|
| 12 | 10 11 | recidd | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A x. ( 1 / A ) ) = 1 ) |
| 13 | 12 | oveq1d | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( A x. ( 1 / A ) ) ^ N ) = ( 1 ^ N ) ) |
| 14 | mulexpz | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( ( 1 / A ) e. CC /\ ( 1 / A ) =/= 0 ) /\ N e. ZZ ) -> ( ( A x. ( 1 / A ) ) ^ N ) = ( ( A ^ N ) x. ( ( 1 / A ) ^ N ) ) ) |
|
| 15 | 10 11 3 5 6 14 | syl221anc | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( A x. ( 1 / A ) ) ^ N ) = ( ( A ^ N ) x. ( ( 1 / A ) ^ N ) ) ) |
| 16 | 1exp | |- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
|
| 17 | 6 16 | syl | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( 1 ^ N ) = 1 ) |
| 18 | 13 15 17 | 3eqtr3d | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( A ^ N ) x. ( ( 1 / A ) ^ N ) ) = 1 ) |
| 19 | 1 8 9 18 | mvllmuld | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( 1 / A ) ^ N ) = ( 1 / ( A ^ N ) ) ) |