This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence of terms converges to zero when it is less than powers of a number A whose absolute value is less than 1. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | explecnv.1 | |- Z = ( ZZ>= ` M ) |
|
| explecnv.2 | |- ( ph -> F e. V ) |
||
| explecnv.3 | |- ( ph -> M e. ZZ ) |
||
| explecnv.5 | |- ( ph -> A e. RR ) |
||
| explecnv.4 | |- ( ph -> ( abs ` A ) < 1 ) |
||
| explecnv.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| explecnv.7 | |- ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) <_ ( A ^ k ) ) |
||
| Assertion | explecnv | |- ( ph -> F ~~> 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | explecnv.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | explecnv.2 | |- ( ph -> F e. V ) |
|
| 3 | explecnv.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | explecnv.5 | |- ( ph -> A e. RR ) |
|
| 5 | explecnv.4 | |- ( ph -> ( abs ` A ) < 1 ) |
|
| 6 | explecnv.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 7 | explecnv.7 | |- ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) <_ ( A ^ k ) ) |
|
| 8 | eqid | |- ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) = ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) |
|
| 9 | 0z | |- 0 e. ZZ |
|
| 10 | ifcl | |- ( ( 0 e. ZZ /\ M e. ZZ ) -> if ( M <_ 0 , 0 , M ) e. ZZ ) |
|
| 11 | 9 3 10 | sylancr | |- ( ph -> if ( M <_ 0 , 0 , M ) e. ZZ ) |
| 12 | 4 | recnd | |- ( ph -> A e. CC ) |
| 13 | 12 5 | expcnv | |- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 14 | 1 | fvexi | |- Z e. _V |
| 15 | 14 | mptex | |- ( n e. Z |-> ( abs ` ( F ` n ) ) ) e. _V |
| 16 | 15 | a1i | |- ( ph -> ( n e. Z |-> ( abs ` ( F ` n ) ) ) e. _V ) |
| 17 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 18 | 1 17 | ineq12i | |- ( Z i^i NN0 ) = ( ( ZZ>= ` M ) i^i ( ZZ>= ` 0 ) ) |
| 19 | uzin | |- ( ( M e. ZZ /\ 0 e. ZZ ) -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` 0 ) ) = ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) |
|
| 20 | 3 9 19 | sylancl | |- ( ph -> ( ( ZZ>= ` M ) i^i ( ZZ>= ` 0 ) ) = ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) |
| 21 | 18 20 | eqtr2id | |- ( ph -> ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) = ( Z i^i NN0 ) ) |
| 22 | 21 | eleq2d | |- ( ph -> ( k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) <-> k e. ( Z i^i NN0 ) ) ) |
| 23 | 22 | biimpa | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> k e. ( Z i^i NN0 ) ) |
| 24 | 23 | elin2d | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> k e. NN0 ) |
| 25 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 26 | eqid | |- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
|
| 27 | ovex | |- ( A ^ k ) e. _V |
|
| 28 | 25 26 27 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 29 | 24 28 | syl | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 30 | 4 | adantr | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> A e. RR ) |
| 31 | 30 24 | reexpcld | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( A ^ k ) e. RR ) |
| 32 | 29 31 | eqeltrd | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) e. RR ) |
| 33 | 23 | elin1d | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> k e. Z ) |
| 34 | 2fveq3 | |- ( n = k -> ( abs ` ( F ` n ) ) = ( abs ` ( F ` k ) ) ) |
|
| 35 | eqid | |- ( n e. Z |-> ( abs ` ( F ` n ) ) ) = ( n e. Z |-> ( abs ` ( F ` n ) ) ) |
|
| 36 | fvex | |- ( abs ` ( F ` k ) ) e. _V |
|
| 37 | 34 35 36 | fvmpt | |- ( k e. Z -> ( ( n e. Z |-> ( abs ` ( F ` n ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) |
| 38 | 33 37 | syl | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( ( n e. Z |-> ( abs ` ( F ` n ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) |
| 39 | 33 6 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( F ` k ) e. CC ) |
| 40 | 39 | abscld | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 41 | 38 40 | eqeltrd | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( ( n e. Z |-> ( abs ` ( F ` n ) ) ) ` k ) e. RR ) |
| 42 | 33 7 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( abs ` ( F ` k ) ) <_ ( A ^ k ) ) |
| 43 | 42 38 29 | 3brtr4d | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> ( ( n e. Z |-> ( abs ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) |
| 44 | 39 | absge0d | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> 0 <_ ( abs ` ( F ` k ) ) ) |
| 45 | 44 38 | breqtrrd | |- ( ( ph /\ k e. ( ZZ>= ` if ( M <_ 0 , 0 , M ) ) ) -> 0 <_ ( ( n e. Z |-> ( abs ` ( F ` n ) ) ) ` k ) ) |
| 46 | 8 11 13 16 32 41 43 45 | climsqz2 | |- ( ph -> ( n e. Z |-> ( abs ` ( F ` n ) ) ) ~~> 0 ) |
| 47 | 37 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( n e. Z |-> ( abs ` ( F ` n ) ) ) ` k ) = ( abs ` ( F ` k ) ) ) |
| 48 | 1 3 2 16 6 47 | climabs0 | |- ( ph -> ( F ~~> 0 <-> ( n e. Z |-> ( abs ` ( F ` n ) ) ) ~~> 0 ) ) |
| 49 | 46 48 | mpbird | |- ( ph -> F ~~> 0 ) |