This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climabs0.1 | |- Z = ( ZZ>= ` M ) |
|
| climabs0.2 | |- ( ph -> M e. ZZ ) |
||
| climabs0.3 | |- ( ph -> F e. V ) |
||
| climabs0.4 | |- ( ph -> G e. W ) |
||
| climabs0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| climabs0.6 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
||
| Assertion | climabs0 | |- ( ph -> ( F ~~> 0 <-> G ~~> 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climabs0.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climabs0.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climabs0.3 | |- ( ph -> F e. V ) |
|
| 4 | climabs0.4 | |- ( ph -> G e. W ) |
|
| 5 | climabs0.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | climabs0.6 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
|
| 7 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 8 | absidm | |- ( ( F ` k ) e. CC -> ( abs ` ( abs ` ( F ` k ) ) ) = ( abs ` ( F ` k ) ) ) |
|
| 9 | 5 8 | syl | |- ( ( ph /\ k e. Z ) -> ( abs ` ( abs ` ( F ` k ) ) ) = ( abs ` ( F ` k ) ) ) |
| 10 | 9 | breq1d | |- ( ( ph /\ k e. Z ) -> ( ( abs ` ( abs ` ( F ` k ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) |
| 11 | 7 10 | sylan2 | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( abs ` ( F ` k ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) |
| 12 | 11 | anassrs | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( abs ` ( F ` k ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) |
| 13 | 12 | ralbidva | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) |
| 14 | 13 | rexbidva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) |
| 15 | 14 | ralbidv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) |
| 16 | 5 | abscld | |- ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 17 | 16 | recnd | |- ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) e. CC ) |
| 18 | 1 2 4 6 17 | clim0c | |- ( ph -> ( G ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x ) ) |
| 19 | eqidd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) |
|
| 20 | 1 2 3 19 5 | clim0c | |- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) |
| 21 | 15 18 20 | 3bitr4rd | |- ( ph -> ( F ~~> 0 <-> G ~~> 0 ) ) |