This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and S. u e. ( M , x ) B ( u ) _d u = A ( x ) converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | |- S = ( T (,) +oo ) |
|
| dvfsum.z | |- Z = ( ZZ>= ` M ) |
||
| dvfsum.m | |- ( ph -> M e. ZZ ) |
||
| dvfsum.d | |- ( ph -> D e. RR ) |
||
| dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
||
| dvfsum.t | |- ( ph -> T e. RR ) |
||
| dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
||
| dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| dvfsum.c | |- ( x = k -> B = C ) |
||
| dvfsumrlim.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
||
| dvfsumrlim.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
||
| dvfsumrlim.k | |- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
||
| dvfsumrlim2.1 | |- ( ph -> X e. S ) |
||
| dvfsumrlim2.2 | |- ( ph -> D <_ X ) |
||
| Assertion | dvfsumrlim2 | |- ( ( ph /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ [_ X / x ]_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | |- S = ( T (,) +oo ) |
|
| 2 | dvfsum.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | dvfsum.m | |- ( ph -> M e. ZZ ) |
|
| 4 | dvfsum.d | |- ( ph -> D e. RR ) |
|
| 5 | dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
|
| 6 | dvfsum.t | |- ( ph -> T e. RR ) |
|
| 7 | dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 8 | dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 9 | dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
|
| 10 | dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 11 | dvfsum.c | |- ( x = k -> B = C ) |
|
| 12 | dvfsumrlim.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
|
| 13 | dvfsumrlim.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
|
| 14 | dvfsumrlim.k | |- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
|
| 15 | dvfsumrlim2.1 | |- ( ph -> X e. S ) |
|
| 16 | dvfsumrlim2.2 | |- ( ph -> D <_ X ) |
|
| 17 | ioossre | |- ( T (,) +oo ) C_ RR |
|
| 18 | 1 17 | eqsstri | |- S C_ RR |
| 19 | 18 15 | sselid | |- ( ph -> X e. RR ) |
| 20 | 19 | rexrd | |- ( ph -> X e. RR* ) |
| 21 | 19 | renepnfd | |- ( ph -> X =/= +oo ) |
| 22 | icopnfsup | |- ( ( X e. RR* /\ X =/= +oo ) -> sup ( ( X [,) +oo ) , RR* , < ) = +oo ) |
|
| 23 | 20 21 22 | syl2anc | |- ( ph -> sup ( ( X [,) +oo ) , RR* , < ) = +oo ) |
| 24 | 23 | adantr | |- ( ( ph /\ G ~~>r L ) -> sup ( ( X [,) +oo ) , RR* , < ) = +oo ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf | |- ( ph -> G : S --> RR ) |
| 26 | 25 | ad2antrr | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> G : S --> RR ) |
| 27 | 15 | ad2antrr | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> X e. S ) |
| 28 | 26 27 | ffvelcdmd | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` X ) e. RR ) |
| 29 | 28 | recnd | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` X ) e. CC ) |
| 30 | 6 | rexrd | |- ( ph -> T e. RR* ) |
| 31 | 15 1 | eleqtrdi | |- ( ph -> X e. ( T (,) +oo ) ) |
| 32 | elioopnf | |- ( T e. RR* -> ( X e. ( T (,) +oo ) <-> ( X e. RR /\ T < X ) ) ) |
|
| 33 | 30 32 | syl | |- ( ph -> ( X e. ( T (,) +oo ) <-> ( X e. RR /\ T < X ) ) ) |
| 34 | 31 33 | mpbid | |- ( ph -> ( X e. RR /\ T < X ) ) |
| 35 | 34 | simprd | |- ( ph -> T < X ) |
| 36 | df-ioo | |- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
|
| 37 | df-ico | |- [,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u <_ w /\ w < v ) } ) |
|
| 38 | xrltletr | |- ( ( T e. RR* /\ X e. RR* /\ z e. RR* ) -> ( ( T < X /\ X <_ z ) -> T < z ) ) |
|
| 39 | 36 37 38 | ixxss1 | |- ( ( T e. RR* /\ T < X ) -> ( X [,) +oo ) C_ ( T (,) +oo ) ) |
| 40 | 30 35 39 | syl2anc | |- ( ph -> ( X [,) +oo ) C_ ( T (,) +oo ) ) |
| 41 | 40 1 | sseqtrrdi | |- ( ph -> ( X [,) +oo ) C_ S ) |
| 42 | 41 | adantr | |- ( ( ph /\ G ~~>r L ) -> ( X [,) +oo ) C_ S ) |
| 43 | 42 | sselda | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> y e. S ) |
| 44 | 26 43 | ffvelcdmd | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` y ) e. RR ) |
| 45 | 44 | recnd | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` y ) e. CC ) |
| 46 | 29 45 | subcld | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( ( G ` X ) - ( G ` y ) ) e. CC ) |
| 47 | pnfxr | |- +oo e. RR* |
|
| 48 | icossre | |- ( ( X e. RR /\ +oo e. RR* ) -> ( X [,) +oo ) C_ RR ) |
|
| 49 | 19 47 48 | sylancl | |- ( ph -> ( X [,) +oo ) C_ RR ) |
| 50 | 49 | adantr | |- ( ( ph /\ G ~~>r L ) -> ( X [,) +oo ) C_ RR ) |
| 51 | rlimf | |- ( G ~~>r L -> G : dom G --> CC ) |
|
| 52 | 51 | adantl | |- ( ( ph /\ G ~~>r L ) -> G : dom G --> CC ) |
| 53 | ovex | |- ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) e. _V |
|
| 54 | 53 13 | dmmpti | |- dom G = S |
| 55 | 54 | feq2i | |- ( G : dom G --> CC <-> G : S --> CC ) |
| 56 | 52 55 | sylib | |- ( ( ph /\ G ~~>r L ) -> G : S --> CC ) |
| 57 | 15 | adantr | |- ( ( ph /\ G ~~>r L ) -> X e. S ) |
| 58 | 56 57 | ffvelcdmd | |- ( ( ph /\ G ~~>r L ) -> ( G ` X ) e. CC ) |
| 59 | rlimconst | |- ( ( ( X [,) +oo ) C_ RR /\ ( G ` X ) e. CC ) -> ( y e. ( X [,) +oo ) |-> ( G ` X ) ) ~~>r ( G ` X ) ) |
|
| 60 | 50 58 59 | syl2anc | |- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( G ` X ) ) ~~>r ( G ` X ) ) |
| 61 | 56 | feqmptd | |- ( ( ph /\ G ~~>r L ) -> G = ( y e. S |-> ( G ` y ) ) ) |
| 62 | simpr | |- ( ( ph /\ G ~~>r L ) -> G ~~>r L ) |
|
| 63 | 61 62 | eqbrtrrd | |- ( ( ph /\ G ~~>r L ) -> ( y e. S |-> ( G ` y ) ) ~~>r L ) |
| 64 | 42 63 | rlimres2 | |- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( G ` y ) ) ~~>r L ) |
| 65 | 29 45 60 64 | rlimsub | |- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( ( G ` X ) - ( G ` y ) ) ) ~~>r ( ( G ` X ) - L ) ) |
| 66 | 46 65 | rlimabs | |- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) ) ~~>r ( abs ` ( ( G ` X ) - L ) ) ) |
| 67 | 18 | a1i | |- ( ph -> S C_ RR ) |
| 68 | 67 7 8 10 | dvmptrecl | |- ( ( ph /\ x e. S ) -> B e. RR ) |
| 69 | 68 | ralrimiva | |- ( ph -> A. x e. S B e. RR ) |
| 70 | nfcsb1v | |- F/_ x [_ X / x ]_ B |
|
| 71 | 70 | nfel1 | |- F/ x [_ X / x ]_ B e. RR |
| 72 | csbeq1a | |- ( x = X -> B = [_ X / x ]_ B ) |
|
| 73 | 72 | eleq1d | |- ( x = X -> ( B e. RR <-> [_ X / x ]_ B e. RR ) ) |
| 74 | 71 73 | rspc | |- ( X e. S -> ( A. x e. S B e. RR -> [_ X / x ]_ B e. RR ) ) |
| 75 | 15 69 74 | sylc | |- ( ph -> [_ X / x ]_ B e. RR ) |
| 76 | 75 | recnd | |- ( ph -> [_ X / x ]_ B e. CC ) |
| 77 | rlimconst | |- ( ( ( X [,) +oo ) C_ RR /\ [_ X / x ]_ B e. CC ) -> ( y e. ( X [,) +oo ) |-> [_ X / x ]_ B ) ~~>r [_ X / x ]_ B ) |
|
| 78 | 49 76 77 | syl2anc | |- ( ph -> ( y e. ( X [,) +oo ) |-> [_ X / x ]_ B ) ~~>r [_ X / x ]_ B ) |
| 79 | 78 | adantr | |- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> [_ X / x ]_ B ) ~~>r [_ X / x ]_ B ) |
| 80 | 46 | abscld | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) e. RR ) |
| 81 | 75 | ad2antrr | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> [_ X / x ]_ B e. RR ) |
| 82 | 29 45 | abssubd | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) = ( abs ` ( ( G ` y ) - ( G ` X ) ) ) ) |
| 83 | 3 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> M e. ZZ ) |
| 84 | 4 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> D e. RR ) |
| 85 | 5 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> M <_ ( D + 1 ) ) |
| 86 | 6 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> T e. RR ) |
| 87 | 7 | adantlr | |- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ x e. S ) -> A e. RR ) |
| 88 | 8 | adantlr | |- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ x e. S ) -> B e. V ) |
| 89 | 9 | adantlr | |- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ x e. Z ) -> B e. RR ) |
| 90 | 10 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
| 91 | 47 | a1i | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> +oo e. RR* ) |
| 92 | 3simpa | |- ( ( D <_ x /\ x <_ k /\ k <_ +oo ) -> ( D <_ x /\ x <_ k ) ) |
|
| 93 | 92 12 | syl3an3 | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ +oo ) ) -> C <_ B ) |
| 94 | 93 | 3adant1r | |- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ +oo ) ) -> C <_ B ) |
| 95 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlimge0 | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
| 96 | 95 | 3adantr3 | |- ( ( ph /\ ( x e. S /\ D <_ x /\ x <_ +oo ) ) -> 0 <_ B ) |
| 97 | 96 | adantlr | |- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ ( x e. S /\ D <_ x /\ x <_ +oo ) ) -> 0 <_ B ) |
| 98 | 15 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> X e. S ) |
| 99 | 41 | sselda | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> y e. S ) |
| 100 | 16 | adantr | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> D <_ X ) |
| 101 | elicopnf | |- ( X e. RR -> ( y e. ( X [,) +oo ) <-> ( y e. RR /\ X <_ y ) ) ) |
|
| 102 | 19 101 | syl | |- ( ph -> ( y e. ( X [,) +oo ) <-> ( y e. RR /\ X <_ y ) ) ) |
| 103 | 102 | simplbda | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> X <_ y ) |
| 104 | 102 | simprbda | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> y e. RR ) |
| 105 | 104 | rexrd | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> y e. RR* ) |
| 106 | pnfge | |- ( y e. RR* -> y <_ +oo ) |
|
| 107 | 105 106 | syl | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> y <_ +oo ) |
| 108 | 1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107 | dvfsumlem4 | |- ( ( ph /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` y ) - ( G ` X ) ) ) <_ [_ X / x ]_ B ) |
| 109 | 108 | adantlr | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` y ) - ( G ` X ) ) ) <_ [_ X / x ]_ B ) |
| 110 | 82 109 | eqbrtrd | |- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) <_ [_ X / x ]_ B ) |
| 111 | 24 66 79 80 81 110 | rlimle | |- ( ( ph /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ [_ X / x ]_ B ) |