This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . Satisfy the assumption of dvfsumlem4 . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | |- S = ( T (,) +oo ) |
|
| dvfsum.z | |- Z = ( ZZ>= ` M ) |
||
| dvfsum.m | |- ( ph -> M e. ZZ ) |
||
| dvfsum.d | |- ( ph -> D e. RR ) |
||
| dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
||
| dvfsum.t | |- ( ph -> T e. RR ) |
||
| dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
||
| dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| dvfsum.c | |- ( x = k -> B = C ) |
||
| dvfsumrlim.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
||
| dvfsumrlim.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
||
| dvfsumrlim.k | |- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
||
| Assertion | dvfsumrlimge0 | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | |- S = ( T (,) +oo ) |
|
| 2 | dvfsum.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | dvfsum.m | |- ( ph -> M e. ZZ ) |
|
| 4 | dvfsum.d | |- ( ph -> D e. RR ) |
|
| 5 | dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
|
| 6 | dvfsum.t | |- ( ph -> T e. RR ) |
|
| 7 | dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 8 | dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 9 | dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
|
| 10 | dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 11 | dvfsum.c | |- ( x = k -> B = C ) |
|
| 12 | dvfsumrlim.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
|
| 13 | dvfsumrlim.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
|
| 14 | dvfsumrlim.k | |- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
|
| 15 | ioossre | |- ( T (,) +oo ) C_ RR |
|
| 16 | 1 15 | eqsstri | |- S C_ RR |
| 17 | simprl | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. S ) |
|
| 18 | 16 17 | sselid | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. RR ) |
| 19 | 18 | rexrd | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. RR* ) |
| 20 | 18 | renepnfd | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x =/= +oo ) |
| 21 | icopnfsup | |- ( ( x e. RR* /\ x =/= +oo ) -> sup ( ( x [,) +oo ) , RR* , < ) = +oo ) |
|
| 22 | 19 20 21 | syl2anc | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> sup ( ( x [,) +oo ) , RR* , < ) = +oo ) |
| 23 | 6 | rexrd | |- ( ph -> T e. RR* ) |
| 24 | 17 1 | eleqtrdi | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> x e. ( T (,) +oo ) ) |
| 25 | 23 | adantr | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> T e. RR* ) |
| 26 | elioopnf | |- ( T e. RR* -> ( x e. ( T (,) +oo ) <-> ( x e. RR /\ T < x ) ) ) |
|
| 27 | 25 26 | syl | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x e. ( T (,) +oo ) <-> ( x e. RR /\ T < x ) ) ) |
| 28 | 24 27 | mpbid | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x e. RR /\ T < x ) ) |
| 29 | 28 | simprd | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> T < x ) |
| 30 | df-ioo | |- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
|
| 31 | df-ico | |- [,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u <_ w /\ w < v ) } ) |
|
| 32 | xrltletr | |- ( ( T e. RR* /\ x e. RR* /\ z e. RR* ) -> ( ( T < x /\ x <_ z ) -> T < z ) ) |
|
| 33 | 30 31 32 | ixxss1 | |- ( ( T e. RR* /\ T < x ) -> ( x [,) +oo ) C_ ( T (,) +oo ) ) |
| 34 | 23 29 33 | syl2an2r | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x [,) +oo ) C_ ( T (,) +oo ) ) |
| 35 | 34 1 | sseqtrrdi | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x [,) +oo ) C_ S ) |
| 36 | 11 | cbvmptv | |- ( x e. S |-> B ) = ( k e. S |-> C ) |
| 37 | 14 | adantr | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( x e. S |-> B ) ~~>r 0 ) |
| 38 | 36 37 | eqbrtrrid | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. S |-> C ) ~~>r 0 ) |
| 39 | 35 38 | rlimres2 | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. ( x [,) +oo ) |-> C ) ~~>r 0 ) |
| 40 | 16 | a1i | |- ( ph -> S C_ RR ) |
| 41 | 40 7 8 10 | dvmptrecl | |- ( ( ph /\ x e. S ) -> B e. RR ) |
| 42 | 41 | adantrr | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> B e. RR ) |
| 43 | 42 | recnd | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> B e. CC ) |
| 44 | rlimconst | |- ( ( S C_ RR /\ B e. CC ) -> ( k e. S |-> B ) ~~>r B ) |
|
| 45 | 40 43 44 | syl2an2r | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. S |-> B ) ~~>r B ) |
| 46 | 35 45 | rlimres2 | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. ( x [,) +oo ) |-> B ) ~~>r B ) |
| 47 | 41 | ralrimiva | |- ( ph -> A. x e. S B e. RR ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> A. x e. S B e. RR ) |
| 49 | 35 | sselda | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> k e. S ) |
| 50 | 11 | eleq1d | |- ( x = k -> ( B e. RR <-> C e. RR ) ) |
| 51 | 50 | rspccva | |- ( ( A. x e. S B e. RR /\ k e. S ) -> C e. RR ) |
| 52 | 48 49 51 | syl2an2r | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> C e. RR ) |
| 53 | 42 | adantr | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> B e. RR ) |
| 54 | simpll | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> ph ) |
|
| 55 | simplrl | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> x e. S ) |
|
| 56 | simplrr | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> D <_ x ) |
|
| 57 | elicopnf | |- ( x e. RR -> ( k e. ( x [,) +oo ) <-> ( k e. RR /\ x <_ k ) ) ) |
|
| 58 | 18 57 | syl | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> ( k e. ( x [,) +oo ) <-> ( k e. RR /\ x <_ k ) ) ) |
| 59 | 58 | simplbda | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> x <_ k ) |
| 60 | 54 55 49 56 59 12 | syl122anc | |- ( ( ( ph /\ ( x e. S /\ D <_ x ) ) /\ k e. ( x [,) +oo ) ) -> C <_ B ) |
| 61 | 22 39 46 52 53 60 | rlimle | |- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |