This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of the limits of two sequences. (Contributed by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimle.1 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| rlimle.2 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
||
| rlimle.3 | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
||
| rlimle.4 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
||
| rlimle.5 | |- ( ( ph /\ x e. A ) -> C e. RR ) |
||
| rlimle.6 | |- ( ( ph /\ x e. A ) -> B <_ C ) |
||
| Assertion | rlimle | |- ( ph -> D <_ E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimle.1 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 2 | rlimle.2 | |- ( ph -> ( x e. A |-> B ) ~~>r D ) |
|
| 3 | rlimle.3 | |- ( ph -> ( x e. A |-> C ) ~~>r E ) |
|
| 4 | rlimle.4 | |- ( ( ph /\ x e. A ) -> B e. RR ) |
|
| 5 | rlimle.5 | |- ( ( ph /\ x e. A ) -> C e. RR ) |
|
| 6 | rlimle.6 | |- ( ( ph /\ x e. A ) -> B <_ C ) |
|
| 7 | 5 4 3 2 | rlimsub | |- ( ph -> ( x e. A |-> ( C - B ) ) ~~>r ( E - D ) ) |
| 8 | 5 4 | resubcld | |- ( ( ph /\ x e. A ) -> ( C - B ) e. RR ) |
| 9 | 5 4 | subge0d | |- ( ( ph /\ x e. A ) -> ( 0 <_ ( C - B ) <-> B <_ C ) ) |
| 10 | 6 9 | mpbird | |- ( ( ph /\ x e. A ) -> 0 <_ ( C - B ) ) |
| 11 | 1 7 8 10 | rlimge0 | |- ( ph -> 0 <_ ( E - D ) ) |
| 12 | 1 3 5 | rlimrecl | |- ( ph -> E e. RR ) |
| 13 | 1 2 4 | rlimrecl | |- ( ph -> D e. RR ) |
| 14 | 12 13 | subge0d | |- ( ph -> ( 0 <_ ( E - D ) <-> D <_ E ) ) |
| 15 | 11 14 | mpbid | |- ( ph -> D <_ E ) |