This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant sequence converges to its value. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlimconst | |- ( ( A C_ RR /\ B e. CC ) -> ( x e. A |-> B ) ~~>r B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | simpllr | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> B e. CC ) |
|
| 3 | 2 | subidd | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( B - B ) = 0 ) |
| 4 | 3 | fveq2d | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( abs ` ( B - B ) ) = ( abs ` 0 ) ) |
| 5 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 6 | 4 5 | eqtrdi | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( abs ` ( B - B ) ) = 0 ) |
| 7 | rpgt0 | |- ( y e. RR+ -> 0 < y ) |
|
| 8 | 7 | ad2antlr | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> 0 < y ) |
| 9 | 6 8 | eqbrtrd | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( abs ` ( B - B ) ) < y ) |
| 10 | 9 | a1d | |- ( ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) /\ x e. A ) -> ( 0 <_ x -> ( abs ` ( B - B ) ) < y ) ) |
| 11 | 10 | ralrimiva | |- ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) -> A. x e. A ( 0 <_ x -> ( abs ` ( B - B ) ) < y ) ) |
| 12 | breq1 | |- ( z = 0 -> ( z <_ x <-> 0 <_ x ) ) |
|
| 13 | 12 | rspceaimv | |- ( ( 0 e. RR /\ A. x e. A ( 0 <_ x -> ( abs ` ( B - B ) ) < y ) ) -> E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) |
| 14 | 1 11 13 | sylancr | |- ( ( ( A C_ RR /\ B e. CC ) /\ y e. RR+ ) -> E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) |
| 15 | 14 | ralrimiva | |- ( ( A C_ RR /\ B e. CC ) -> A. y e. RR+ E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) |
| 16 | simplr | |- ( ( ( A C_ RR /\ B e. CC ) /\ x e. A ) -> B e. CC ) |
|
| 17 | 16 | ralrimiva | |- ( ( A C_ RR /\ B e. CC ) -> A. x e. A B e. CC ) |
| 18 | simpl | |- ( ( A C_ RR /\ B e. CC ) -> A C_ RR ) |
|
| 19 | simpr | |- ( ( A C_ RR /\ B e. CC ) -> B e. CC ) |
|
| 20 | 17 18 19 | rlim2 | |- ( ( A C_ RR /\ B e. CC ) -> ( ( x e. A |-> B ) ~~>r B <-> A. y e. RR+ E. z e. RR A. x e. A ( z <_ x -> ( abs ` ( B - B ) ) < y ) ) ) |
| 21 | 15 20 | mpbird | |- ( ( A C_ RR /\ B e. CC ) -> ( x e. A |-> B ) ~~>r B ) |