This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icopnfsup | |- ( ( A e. RR* /\ A =/= +oo ) -> sup ( ( A [,) +oo ) , RR* , < ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR* /\ A =/= +oo ) -> A e. RR* ) |
|
| 2 | pnfxr | |- +oo e. RR* |
|
| 3 | 2 | a1i | |- ( ( A e. RR* /\ A =/= +oo ) -> +oo e. RR* ) |
| 4 | nltpnft | |- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
|
| 5 | 4 | necon2abid | |- ( A e. RR* -> ( A < +oo <-> A =/= +oo ) ) |
| 6 | 5 | biimpar | |- ( ( A e. RR* /\ A =/= +oo ) -> A < +oo ) |
| 7 | lbico1 | |- ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> A e. ( A [,) +oo ) ) |
|
| 8 | 1 3 6 7 | syl3anc | |- ( ( A e. RR* /\ A =/= +oo ) -> A e. ( A [,) +oo ) ) |
| 9 | 8 | ne0d | |- ( ( A e. RR* /\ A =/= +oo ) -> ( A [,) +oo ) =/= (/) ) |
| 10 | df-ico | |- [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } ) |
|
| 11 | idd | |- ( ( w e. RR* /\ +oo e. RR* ) -> ( w < +oo -> w < +oo ) ) |
|
| 12 | xrltle | |- ( ( w e. RR* /\ +oo e. RR* ) -> ( w < +oo -> w <_ +oo ) ) |
|
| 13 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
|
| 14 | idd | |- ( ( A e. RR* /\ w e. RR* ) -> ( A <_ w -> A <_ w ) ) |
|
| 15 | 10 11 12 13 14 | ixxub | |- ( ( A e. RR* /\ +oo e. RR* /\ ( A [,) +oo ) =/= (/) ) -> sup ( ( A [,) +oo ) , RR* , < ) = +oo ) |
| 16 | 1 3 9 15 | syl3anc | |- ( ( A e. RR* /\ A =/= +oo ) -> sup ( ( A [,) +oo ) , RR* , < ) = +oo ) |