This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | |- S = ( T (,) +oo ) |
|
| dvfsum.z | |- Z = ( ZZ>= ` M ) |
||
| dvfsum.m | |- ( ph -> M e. ZZ ) |
||
| dvfsum.d | |- ( ph -> D e. RR ) |
||
| dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
||
| dvfsum.t | |- ( ph -> T e. RR ) |
||
| dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
||
| dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| dvfsum.c | |- ( x = k -> B = C ) |
||
| dvfsumrlim.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
||
| dvfsumrlim.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
||
| dvfsumrlim.k | |- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
||
| dvfsumrlim3.1 | |- ( x = X -> B = E ) |
||
| Assertion | dvfsumrlim3 | |- ( ph -> ( G : S --> RR /\ G e. dom ~~>r /\ ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | |- S = ( T (,) +oo ) |
|
| 2 | dvfsum.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | dvfsum.m | |- ( ph -> M e. ZZ ) |
|
| 4 | dvfsum.d | |- ( ph -> D e. RR ) |
|
| 5 | dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
|
| 6 | dvfsum.t | |- ( ph -> T e. RR ) |
|
| 7 | dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 8 | dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 9 | dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
|
| 10 | dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 11 | dvfsum.c | |- ( x = k -> B = C ) |
|
| 12 | dvfsumrlim.l | |- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
|
| 13 | dvfsumrlim.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
|
| 14 | dvfsumrlim.k | |- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
|
| 15 | dvfsumrlim3.1 | |- ( x = X -> B = E ) |
|
| 16 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf | |- ( ph -> G : S --> RR ) |
| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlim | |- ( ph -> G e. dom ~~>r ) |
| 18 | 3 | adantr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> M e. ZZ ) |
| 19 | 4 | adantr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> D e. RR ) |
| 20 | 5 | adantr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> M <_ ( D + 1 ) ) |
| 21 | 6 | adantr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> T e. RR ) |
| 22 | 7 | adantlr | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. S ) -> A e. RR ) |
| 23 | 8 | adantlr | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. S ) -> B e. V ) |
| 24 | 9 | adantlr | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. Z ) -> B e. RR ) |
| 25 | 10 | adantr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
| 26 | 12 | 3adant1r | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
| 27 | 14 | adantr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> ( x e. S |-> B ) ~~>r 0 ) |
| 28 | simprr | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> X e. S ) |
|
| 29 | simprl | |- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> D <_ X ) |
|
| 30 | 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 | dvfsumrlim2 | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ [_ X / x ]_ B ) |
| 31 | 28 | adantr | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> X e. S ) |
| 32 | nfcvd | |- ( X e. S -> F/_ x E ) |
|
| 33 | 32 15 | csbiegf | |- ( X e. S -> [_ X / x ]_ B = E ) |
| 34 | 31 33 | syl | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> [_ X / x ]_ B = E ) |
| 35 | 30 34 | breqtrd | |- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) |
| 36 | 35 | exp42 | |- ( ph -> ( D <_ X -> ( X e. S -> ( G ~~>r L -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) ) |
| 37 | 36 | com24 | |- ( ph -> ( G ~~>r L -> ( X e. S -> ( D <_ X -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) ) |
| 38 | 37 | 3impd | |- ( ph -> ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) |
| 39 | 16 17 38 | 3jca | |- ( ph -> ( G : S --> RR /\ G e. dom ~~>r /\ ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) |