This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicopnf | |- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | elico2 | |- ( ( A e. RR /\ +oo e. RR* ) -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) ) |
| 4 | ltpnf | |- ( B e. RR -> B < +oo ) |
|
| 5 | 4 | adantr | |- ( ( B e. RR /\ A <_ B ) -> B < +oo ) |
| 6 | 5 | pm4.71i | |- ( ( B e. RR /\ A <_ B ) <-> ( ( B e. RR /\ A <_ B ) /\ B < +oo ) ) |
| 7 | df-3an | |- ( ( B e. RR /\ A <_ B /\ B < +oo ) <-> ( ( B e. RR /\ A <_ B ) /\ B < +oo ) ) |
|
| 8 | 6 7 | bitr4i | |- ( ( B e. RR /\ A <_ B ) <-> ( B e. RR /\ A <_ B /\ B < +oo ) ) |
| 9 | 3 8 | bitr4di | |- ( A e. RR -> ( B e. ( A [,) +oo ) <-> ( B e. RR /\ A <_ B ) ) ) |