This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if x e. S |-> B is a decreasing function with antiderivative A converging to zero, then the difference between sum_ k e. ( M ... ( |_x ) ) B ( k ) and S. u e. ( M , x ) B ( u ) _d u = A ( x ) converges to a constant limit value, with the remainder term bounded by B ( x ) . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | ||
| dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | ||
| dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | ||
| dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | ||
| dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | ||
| dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | ||
| dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | ||
| dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | ||
| dvfsumrlim2.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| dvfsumrlim2.2 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | ||
| Assertion | dvfsumrlim2 | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | ⊢ 𝑆 = ( 𝑇 (,) +∞ ) | |
| 2 | dvfsum.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | dvfsum.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | dvfsum.d | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | dvfsum.md | ⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) | |
| 6 | dvfsum.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 7 | dvfsum.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) | |
| 8 | dvfsum.b1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | dvfsum.b2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 10 | dvfsum.b3 | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) | |
| 11 | dvfsum.c | ⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) | |
| 12 | dvfsumrlim.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) | |
| 13 | dvfsumrlim.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) | |
| 14 | dvfsumrlim.k | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) | |
| 15 | dvfsumrlim2.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 16 | dvfsumrlim2.2 | ⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) | |
| 17 | ioossre | ⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ | |
| 18 | 1 17 | eqsstri | ⊢ 𝑆 ⊆ ℝ |
| 19 | 18 15 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 20 | 19 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 21 | 19 | renepnfd | ⊢ ( 𝜑 → 𝑋 ≠ +∞ ) |
| 22 | icopnfsup | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≠ +∞ ) → sup ( ( 𝑋 [,) +∞ ) , ℝ* , < ) = +∞ ) | |
| 23 | 20 21 22 | syl2anc | ⊢ ( 𝜑 → sup ( ( 𝑋 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → sup ( ( 𝑋 [,) +∞ ) , ℝ* , < ) = +∞ ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 11 13 | dvfsumrlimf | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝐺 : 𝑆 ⟶ ℝ ) |
| 27 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑋 ∈ 𝑆 ) |
| 28 | 26 27 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ℝ ) |
| 29 | 28 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
| 30 | 6 | rexrd | ⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
| 31 | 15 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 (,) +∞ ) ) |
| 32 | elioopnf | ⊢ ( 𝑇 ∈ ℝ* → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) | |
| 33 | 30 32 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
| 34 | 31 33 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) |
| 35 | 34 | simprd | ⊢ ( 𝜑 → 𝑇 < 𝑋 ) |
| 36 | df-ioo | ⊢ (,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 < 𝑤 ∧ 𝑤 < 𝑣 ) } ) | |
| 37 | df-ico | ⊢ [,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣 ) } ) | |
| 38 | xrltletr | ⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑋 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑇 < 𝑋 ∧ 𝑋 ≤ 𝑧 ) → 𝑇 < 𝑧 ) ) | |
| 39 | 36 37 38 | ixxss1 | ⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑇 < 𝑋 ) → ( 𝑋 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 40 | 30 35 39 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
| 41 | 40 1 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝑋 [,) +∞ ) ⊆ 𝑆 ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑋 [,) +∞ ) ⊆ 𝑆 ) |
| 43 | 42 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ 𝑆 ) |
| 44 | 26 43 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
| 46 | 29 45 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ∈ ℂ ) |
| 47 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 48 | icossre | ⊢ ( ( 𝑋 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑋 [,) +∞ ) ⊆ ℝ ) | |
| 49 | 19 47 48 | sylancl | ⊢ ( 𝜑 → ( 𝑋 [,) +∞ ) ⊆ ℝ ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑋 [,) +∞ ) ⊆ ℝ ) |
| 51 | rlimf | ⊢ ( 𝐺 ⇝𝑟 𝐿 → 𝐺 : dom 𝐺 ⟶ ℂ ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 53 | ovex | ⊢ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ∈ V | |
| 54 | 53 13 | dmmpti | ⊢ dom 𝐺 = 𝑆 |
| 55 | 54 | feq2i | ⊢ ( 𝐺 : dom 𝐺 ⟶ ℂ ↔ 𝐺 : 𝑆 ⟶ ℂ ) |
| 56 | 52 55 | sylib | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 57 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝑋 ∈ 𝑆 ) |
| 58 | 56 57 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
| 59 | rlimconst | ⊢ ( ( ( 𝑋 [,) +∞ ) ⊆ ℝ ∧ ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( 𝐺 ‘ 𝑋 ) ) ⇝𝑟 ( 𝐺 ‘ 𝑋 ) ) | |
| 60 | 50 58 59 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( 𝐺 ‘ 𝑋 ) ) ⇝𝑟 ( 𝐺 ‘ 𝑋 ) ) |
| 61 | 56 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 = ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑦 ) ) ) |
| 62 | simpr | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 ⇝𝑟 𝐿 ) | |
| 63 | 61 62 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑦 ) ) ⇝𝑟 𝐿 ) |
| 64 | 42 63 | rlimres2 | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( 𝐺 ‘ 𝑦 ) ) ⇝𝑟 𝐿 ) |
| 65 | 29 45 60 64 | rlimsub | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ⇝𝑟 ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) |
| 66 | 46 65 | rlimabs | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ) ⇝𝑟 ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ) |
| 67 | 18 | a1i | ⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
| 68 | 67 7 8 10 | dvmptrecl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
| 69 | 68 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
| 70 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 | |
| 71 | 70 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ |
| 72 | csbeq1a | ⊢ ( 𝑥 = 𝑋 → 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 73 | 72 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 74 | 71 73 | rspc | ⊢ ( 𝑋 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 75 | 15 69 74 | sylc | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 76 | 75 | recnd | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 77 | rlimconst | ⊢ ( ( ( 𝑋 [,) +∞ ) ⊆ ℝ ∧ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ⇝𝑟 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) | |
| 78 | 49 76 77 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ⇝𝑟 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 79 | 78 | adantr | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ⇝𝑟 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 80 | 46 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ∈ ℝ ) |
| 81 | 75 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 82 | 29 45 | abssubd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) |
| 83 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑀 ∈ ℤ ) |
| 84 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝐷 ∈ ℝ ) |
| 85 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
| 86 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑇 ∈ ℝ ) |
| 87 | 7 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
| 88 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
| 89 | 9 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 90 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
| 91 | 47 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 92 | 3simpa | ⊢ ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) → ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) | |
| 93 | 92 12 | syl3an3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
| 94 | 93 | 3adant1r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
| 95 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | dvfsumrlimge0 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |
| 96 | 95 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
| 97 | 96 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
| 98 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑋 ∈ 𝑆 ) |
| 99 | 41 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ 𝑆 ) |
| 100 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝐷 ≤ 𝑋 ) |
| 101 | elicopnf | ⊢ ( 𝑋 ∈ ℝ → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ) ) ) | |
| 102 | 19 101 | syl | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ) ) ) |
| 103 | 102 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑋 ≤ 𝑦 ) |
| 104 | 102 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
| 105 | 104 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ ℝ* ) |
| 106 | pnfge | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) | |
| 107 | 105 106 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ≤ +∞ ) |
| 108 | 1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107 | dvfsumlem4 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 109 | 108 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 110 | 82 109 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
| 111 | 24 66 79 80 81 110 | rlimle | ⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |