This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvfsumrlim . (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvfsum.s | |- S = ( T (,) +oo ) |
|
| dvfsum.z | |- Z = ( ZZ>= ` M ) |
||
| dvfsum.m | |- ( ph -> M e. ZZ ) |
||
| dvfsum.d | |- ( ph -> D e. RR ) |
||
| dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
||
| dvfsum.t | |- ( ph -> T e. RR ) |
||
| dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
||
| dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
||
| dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
||
| dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
||
| dvfsum.c | |- ( x = k -> B = C ) |
||
| dvfsumrlimf.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
||
| Assertion | dvfsumrlimf | |- ( ph -> G : S --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfsum.s | |- S = ( T (,) +oo ) |
|
| 2 | dvfsum.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | dvfsum.m | |- ( ph -> M e. ZZ ) |
|
| 4 | dvfsum.d | |- ( ph -> D e. RR ) |
|
| 5 | dvfsum.md | |- ( ph -> M <_ ( D + 1 ) ) |
|
| 6 | dvfsum.t | |- ( ph -> T e. RR ) |
|
| 7 | dvfsum.a | |- ( ( ph /\ x e. S ) -> A e. RR ) |
|
| 8 | dvfsum.b1 | |- ( ( ph /\ x e. S ) -> B e. V ) |
|
| 9 | dvfsum.b2 | |- ( ( ph /\ x e. Z ) -> B e. RR ) |
|
| 10 | dvfsum.b3 | |- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
|
| 11 | dvfsum.c | |- ( x = k -> B = C ) |
|
| 12 | dvfsumrlimf.g | |- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
|
| 13 | fzfid | |- ( ( ph /\ x e. S ) -> ( M ... ( |_ ` x ) ) e. Fin ) |
|
| 14 | 9 | ralrimiva | |- ( ph -> A. x e. Z B e. RR ) |
| 15 | 14 | adantr | |- ( ( ph /\ x e. S ) -> A. x e. Z B e. RR ) |
| 16 | elfzuz | |- ( k e. ( M ... ( |_ ` x ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 17 | 16 2 | eleqtrrdi | |- ( k e. ( M ... ( |_ ` x ) ) -> k e. Z ) |
| 18 | 11 | eleq1d | |- ( x = k -> ( B e. RR <-> C e. RR ) ) |
| 19 | 18 | rspccva | |- ( ( A. x e. Z B e. RR /\ k e. Z ) -> C e. RR ) |
| 20 | 15 17 19 | syl2an | |- ( ( ( ph /\ x e. S ) /\ k e. ( M ... ( |_ ` x ) ) ) -> C e. RR ) |
| 21 | 13 20 | fsumrecl | |- ( ( ph /\ x e. S ) -> sum_ k e. ( M ... ( |_ ` x ) ) C e. RR ) |
| 22 | 21 7 | resubcld | |- ( ( ph /\ x e. S ) -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) e. RR ) |
| 23 | 22 12 | fmptd | |- ( ph -> G : S --> RR ) |