This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcl.s | |- ( ph -> S C_ CC ) |
|
| dvcl.f | |- ( ph -> F : A --> CC ) |
||
| dvcl.a | |- ( ph -> A C_ S ) |
||
| Assertion | dvcl | |- ( ( ph /\ B ( S _D F ) C ) -> C e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcl.s | |- ( ph -> S C_ CC ) |
|
| 2 | dvcl.f | |- ( ph -> F : A --> CC ) |
|
| 3 | dvcl.a | |- ( ph -> A C_ S ) |
|
| 4 | limccl | |- ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) C_ CC |
|
| 5 | eqid | |- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
|
| 6 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 7 | eqid | |- ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) = ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) |
|
| 8 | 5 6 7 1 2 3 | eldv | |- ( ph -> ( B ( S _D F ) C <-> ( B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` A ) /\ C e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) ) ) |
| 9 | 8 | simplbda | |- ( ( ph /\ B ( S _D F ) C ) -> C e. ( ( z e. ( A \ { B } ) |-> ( ( ( F ` z ) - ( F ` B ) ) / ( z - B ) ) ) limCC B ) ) |
| 10 | 4 9 | sselid | |- ( ( ph /\ B ( S _D F ) C ) -> C e. CC ) |