This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It suffices to consider functions which are not defined at B to define the limit of a function. In particular, the value of the original function F at B does not affect the limit of F . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limccl.f | |- ( ph -> F : A --> CC ) |
|
| Assertion | limcdif | |- ( ph -> ( F limCC B ) = ( ( F |` ( A \ { B } ) ) limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limccl.f | |- ( ph -> F : A --> CC ) |
|
| 2 | 1 | fdmd | |- ( ph -> dom F = A ) |
| 3 | 2 | adantr | |- ( ( ph /\ x e. ( F limCC B ) ) -> dom F = A ) |
| 4 | limcrcl | |- ( x e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
|
| 5 | 4 | adantl | |- ( ( ph /\ x e. ( F limCC B ) ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
| 6 | 5 | simp2d | |- ( ( ph /\ x e. ( F limCC B ) ) -> dom F C_ CC ) |
| 7 | 3 6 | eqsstrrd | |- ( ( ph /\ x e. ( F limCC B ) ) -> A C_ CC ) |
| 8 | 5 | simp3d | |- ( ( ph /\ x e. ( F limCC B ) ) -> B e. CC ) |
| 9 | 7 8 | jca | |- ( ( ph /\ x e. ( F limCC B ) ) -> ( A C_ CC /\ B e. CC ) ) |
| 10 | 9 | ex | |- ( ph -> ( x e. ( F limCC B ) -> ( A C_ CC /\ B e. CC ) ) ) |
| 11 | undif1 | |- ( ( A \ { B } ) u. { B } ) = ( A u. { B } ) |
|
| 12 | difss | |- ( A \ { B } ) C_ A |
|
| 13 | fssres | |- ( ( F : A --> CC /\ ( A \ { B } ) C_ A ) -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
|
| 14 | 1 12 13 | sylancl | |- ( ph -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
| 15 | 14 | fdmd | |- ( ph -> dom ( F |` ( A \ { B } ) ) = ( A \ { B } ) ) |
| 16 | 15 | adantr | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> dom ( F |` ( A \ { B } ) ) = ( A \ { B } ) ) |
| 17 | limcrcl | |- ( x e. ( ( F |` ( A \ { B } ) ) limCC B ) -> ( ( F |` ( A \ { B } ) ) : dom ( F |` ( A \ { B } ) ) --> CC /\ dom ( F |` ( A \ { B } ) ) C_ CC /\ B e. CC ) ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> ( ( F |` ( A \ { B } ) ) : dom ( F |` ( A \ { B } ) ) --> CC /\ dom ( F |` ( A \ { B } ) ) C_ CC /\ B e. CC ) ) |
| 19 | 18 | simp2d | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> dom ( F |` ( A \ { B } ) ) C_ CC ) |
| 20 | 16 19 | eqsstrrd | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> ( A \ { B } ) C_ CC ) |
| 21 | 18 | simp3d | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> B e. CC ) |
| 22 | 21 | snssd | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> { B } C_ CC ) |
| 23 | 20 22 | unssd | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> ( ( A \ { B } ) u. { B } ) C_ CC ) |
| 24 | 11 23 | eqsstrrid | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> ( A u. { B } ) C_ CC ) |
| 25 | 24 | unssad | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> A C_ CC ) |
| 26 | 25 21 | jca | |- ( ( ph /\ x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) -> ( A C_ CC /\ B e. CC ) ) |
| 27 | 26 | ex | |- ( ph -> ( x e. ( ( F |` ( A \ { B } ) ) limCC B ) -> ( A C_ CC /\ B e. CC ) ) ) |
| 28 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( A u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( A u. { B } ) ) |
|
| 29 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 30 | eqid | |- ( z e. ( A u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) |
|
| 31 | 1 | adantr | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> F : A --> CC ) |
| 32 | simprl | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> A C_ CC ) |
|
| 33 | simprr | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> B e. CC ) |
|
| 34 | 28 29 30 31 32 33 | ellimc | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> ( x e. ( F limCC B ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A u. { B } ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 35 | 11 | eqcomi | |- ( A u. { B } ) = ( ( A \ { B } ) u. { B } ) |
| 36 | 35 | oveq2i | |- ( ( TopOpen ` CCfld ) |`t ( A u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A \ { B } ) u. { B } ) ) |
| 37 | 35 | mpteq1i | |- ( z e. ( A u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) = ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) |
| 38 | elun | |- ( z e. ( ( A \ { B } ) u. { B } ) <-> ( z e. ( A \ { B } ) \/ z e. { B } ) ) |
|
| 39 | velsn | |- ( z e. { B } <-> z = B ) |
|
| 40 | 39 | orbi2i | |- ( ( z e. ( A \ { B } ) \/ z e. { B } ) <-> ( z e. ( A \ { B } ) \/ z = B ) ) |
| 41 | pm5.61 | |- ( ( ( z e. ( A \ { B } ) \/ z = B ) /\ -. z = B ) <-> ( z e. ( A \ { B } ) /\ -. z = B ) ) |
|
| 42 | fvres | |- ( z e. ( A \ { B } ) -> ( ( F |` ( A \ { B } ) ) ` z ) = ( F ` z ) ) |
|
| 43 | 42 | adantr | |- ( ( z e. ( A \ { B } ) /\ -. z = B ) -> ( ( F |` ( A \ { B } ) ) ` z ) = ( F ` z ) ) |
| 44 | 41 43 | sylbi | |- ( ( ( z e. ( A \ { B } ) \/ z = B ) /\ -. z = B ) -> ( ( F |` ( A \ { B } ) ) ` z ) = ( F ` z ) ) |
| 45 | 44 | ifeq2da | |- ( ( z e. ( A \ { B } ) \/ z = B ) -> if ( z = B , x , ( ( F |` ( A \ { B } ) ) ` z ) ) = if ( z = B , x , ( F ` z ) ) ) |
| 46 | 40 45 | sylbi | |- ( ( z e. ( A \ { B } ) \/ z e. { B } ) -> if ( z = B , x , ( ( F |` ( A \ { B } ) ) ` z ) ) = if ( z = B , x , ( F ` z ) ) ) |
| 47 | 38 46 | sylbi | |- ( z e. ( ( A \ { B } ) u. { B } ) -> if ( z = B , x , ( ( F |` ( A \ { B } ) ) ` z ) ) = if ( z = B , x , ( F ` z ) ) ) |
| 48 | 47 | mpteq2ia | |- ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , x , ( ( F |` ( A \ { B } ) ) ` z ) ) ) = ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) |
| 49 | 37 48 | eqtr4i | |- ( z e. ( A u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) = ( z e. ( ( A \ { B } ) u. { B } ) |-> if ( z = B , x , ( ( F |` ( A \ { B } ) ) ` z ) ) ) |
| 50 | 14 | adantr | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
| 51 | 32 | ssdifssd | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> ( A \ { B } ) C_ CC ) |
| 52 | 36 29 49 50 51 33 | ellimc | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> ( x e. ( ( F |` ( A \ { B } ) ) limCC B ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , x , ( F ` z ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A u. { B } ) ) CnP ( TopOpen ` CCfld ) ) ` B ) ) ) |
| 53 | 34 52 | bitr4d | |- ( ( ph /\ ( A C_ CC /\ B e. CC ) ) -> ( x e. ( F limCC B ) <-> x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) ) |
| 54 | 53 | ex | |- ( ph -> ( ( A C_ CC /\ B e. CC ) -> ( x e. ( F limCC B ) <-> x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) ) ) |
| 55 | 10 27 54 | pm5.21ndd | |- ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( F |` ( A \ { B } ) ) limCC B ) ) ) |
| 56 | 55 | eqrdv | |- ( ph -> ( F limCC B ) = ( ( F |` ( A \ { B } ) ) limCC B ) ) |