This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subginvcl.i | |- I = ( invg ` G ) |
|
| Assertion | subginvcl | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subginvcl.i | |- I = ( invg ` G ) |
|
| 2 | eqid | |- ( G |`s S ) = ( G |`s S ) |
|
| 3 | 2 | subggrp | |- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 4 | simpr | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. S ) |
|
| 5 | 2 | subgbas | |- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 6 | 5 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> S = ( Base ` ( G |`s S ) ) ) |
| 7 | 4 6 | eleqtrd | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> X e. ( Base ` ( G |`s S ) ) ) |
| 8 | eqid | |- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
|
| 9 | eqid | |- ( invg ` ( G |`s S ) ) = ( invg ` ( G |`s S ) ) |
|
| 10 | 8 9 | grpinvcl | |- ( ( ( G |`s S ) e. Grp /\ X e. ( Base ` ( G |`s S ) ) ) -> ( ( invg ` ( G |`s S ) ) ` X ) e. ( Base ` ( G |`s S ) ) ) |
| 11 | 3 7 10 | syl2an2r | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( ( invg ` ( G |`s S ) ) ` X ) e. ( Base ` ( G |`s S ) ) ) |
| 12 | 2 1 9 | subginv | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) = ( ( invg ` ( G |`s S ) ) ` X ) ) |
| 13 | 11 12 6 | 3eltr4d | |- ( ( S e. ( SubGrp ` G ) /\ X e. S ) -> ( I ` X ) e. S ) |