This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cygzn . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | |- B = ( Base ` G ) |
|
| cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
||
| cygzn.y | |- Y = ( Z/nZ ` N ) |
||
| cygzn.m | |- .x. = ( .g ` G ) |
||
| cygzn.l | |- L = ( ZRHom ` Y ) |
||
| cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| cygzn.g | |- ( ph -> G e. CycGrp ) |
||
| cygzn.x | |- ( ph -> X e. E ) |
||
| cygzn.f | |- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
||
| Assertion | cygznlem2a | |- ( ph -> F : ( Base ` Y ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | |- B = ( Base ` G ) |
|
| 2 | cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
|
| 3 | cygzn.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | cygzn.m | |- .x. = ( .g ` G ) |
|
| 5 | cygzn.l | |- L = ( ZRHom ` Y ) |
|
| 6 | cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 7 | cygzn.g | |- ( ph -> G e. CycGrp ) |
|
| 8 | cygzn.x | |- ( ph -> X e. E ) |
|
| 9 | cygzn.f | |- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
|
| 10 | fvexd | |- ( ( ph /\ m e. ZZ ) -> ( L ` m ) e. _V ) |
|
| 11 | cyggrp | |- ( G e. CycGrp -> G e. Grp ) |
|
| 12 | 7 11 | syl | |- ( ph -> G e. Grp ) |
| 13 | 12 | adantr | |- ( ( ph /\ m e. ZZ ) -> G e. Grp ) |
| 14 | simpr | |- ( ( ph /\ m e. ZZ ) -> m e. ZZ ) |
|
| 15 | 6 | ssrab3 | |- E C_ B |
| 16 | 15 8 | sselid | |- ( ph -> X e. B ) |
| 17 | 16 | adantr | |- ( ( ph /\ m e. ZZ ) -> X e. B ) |
| 18 | 1 4 | mulgcl | |- ( ( G e. Grp /\ m e. ZZ /\ X e. B ) -> ( m .x. X ) e. B ) |
| 19 | 13 14 17 18 | syl3anc | |- ( ( ph /\ m e. ZZ ) -> ( m .x. X ) e. B ) |
| 20 | fveq2 | |- ( m = k -> ( L ` m ) = ( L ` k ) ) |
|
| 21 | oveq1 | |- ( m = k -> ( m .x. X ) = ( k .x. X ) ) |
|
| 22 | 1 2 3 4 5 6 7 8 | cygznlem1 | |- ( ( ph /\ ( m e. ZZ /\ k e. ZZ ) ) -> ( ( L ` m ) = ( L ` k ) <-> ( m .x. X ) = ( k .x. X ) ) ) |
| 23 | 22 | biimpd | |- ( ( ph /\ ( m e. ZZ /\ k e. ZZ ) ) -> ( ( L ` m ) = ( L ` k ) -> ( m .x. X ) = ( k .x. X ) ) ) |
| 24 | 23 | exp32 | |- ( ph -> ( m e. ZZ -> ( k e. ZZ -> ( ( L ` m ) = ( L ` k ) -> ( m .x. X ) = ( k .x. X ) ) ) ) ) |
| 25 | 24 | 3imp2 | |- ( ( ph /\ ( m e. ZZ /\ k e. ZZ /\ ( L ` m ) = ( L ` k ) ) ) -> ( m .x. X ) = ( k .x. X ) ) |
| 26 | 9 10 19 20 21 25 | fliftfund | |- ( ph -> Fun F ) |
| 27 | 9 10 19 | fliftf | |- ( ph -> ( Fun F <-> F : ran ( m e. ZZ |-> ( L ` m ) ) --> B ) ) |
| 28 | 26 27 | mpbid | |- ( ph -> F : ran ( m e. ZZ |-> ( L ` m ) ) --> B ) |
| 29 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
| 31 | 0nn0 | |- 0 e. NN0 |
|
| 32 | 31 | a1i | |- ( ( ph /\ -. B e. Fin ) -> 0 e. NN0 ) |
| 33 | 30 32 | ifclda | |- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) e. NN0 ) |
| 34 | 2 33 | eqeltrid | |- ( ph -> N e. NN0 ) |
| 35 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 36 | 3 35 5 | znzrhfo | |- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
| 37 | 34 36 | syl | |- ( ph -> L : ZZ -onto-> ( Base ` Y ) ) |
| 38 | fof | |- ( L : ZZ -onto-> ( Base ` Y ) -> L : ZZ --> ( Base ` Y ) ) |
|
| 39 | 37 38 | syl | |- ( ph -> L : ZZ --> ( Base ` Y ) ) |
| 40 | 39 | feqmptd | |- ( ph -> L = ( m e. ZZ |-> ( L ` m ) ) ) |
| 41 | 40 | rneqd | |- ( ph -> ran L = ran ( m e. ZZ |-> ( L ` m ) ) ) |
| 42 | forn | |- ( L : ZZ -onto-> ( Base ` Y ) -> ran L = ( Base ` Y ) ) |
|
| 43 | 37 42 | syl | |- ( ph -> ran L = ( Base ` Y ) ) |
| 44 | 41 43 | eqtr3d | |- ( ph -> ran ( m e. ZZ |-> ( L ` m ) ) = ( Base ` Y ) ) |
| 45 | 44 | feq2d | |- ( ph -> ( F : ran ( m e. ZZ |-> ( L ` m ) ) --> B <-> F : ( Base ` Y ) --> B ) ) |
| 46 | 28 45 | mpbid | |- ( ph -> F : ( Base ` Y ) --> B ) |