This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ , and an infinite cyclic group is isomorphic to ZZ / 0 ZZ ~ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | |- B = ( Base ` G ) |
|
| cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
||
| cygzn.y | |- Y = ( Z/nZ ` N ) |
||
| Assertion | cygzn | |- ( G e. CycGrp -> G ~=g Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | |- B = ( Base ` G ) |
|
| 2 | cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
|
| 3 | cygzn.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 5 | eqid | |- { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } |
|
| 6 | 1 4 5 | iscyg2 | |- ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) ) |
| 7 | 6 | simprbi | |- ( G e. CycGrp -> { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) |
| 8 | n0 | |- ( { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) <-> E. g g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
|
| 9 | 7 8 | sylib | |- ( G e. CycGrp -> E. g g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
| 10 | eqid | |- ( ZRHom ` Y ) = ( ZRHom ` Y ) |
|
| 11 | simpl | |- ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> G e. CycGrp ) |
|
| 12 | simpr | |- ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) |
|
| 13 | eqid | |- ran ( m e. ZZ |-> <. ( ( ZRHom ` Y ) ` m ) , ( m ( .g ` G ) g ) >. ) = ran ( m e. ZZ |-> <. ( ( ZRHom ` Y ) ` m ) , ( m ( .g ` G ) g ) >. ) |
|
| 14 | 1 2 3 4 10 5 11 12 13 | cygznlem3 | |- ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> G ~=g Y ) |
| 15 | 9 14 | exlimddv | |- ( G e. CycGrp -> G ~=g Y ) |