This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | |- B = ( Base ` G ) |
|
| iscyg.2 | |- .x. = ( .g ` G ) |
||
| iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| Assertion | iscyggen2 | |- ( G e. Grp -> ( X e. E <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | |- B = ( Base ` G ) |
|
| 2 | iscyg.2 | |- .x. = ( .g ` G ) |
|
| 3 | iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 4 | 1 2 3 | iscyggen | |- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 5 | 1 2 | mulgcl | |- ( ( G e. Grp /\ n e. ZZ /\ X e. B ) -> ( n .x. X ) e. B ) |
| 6 | 5 | 3expa | |- ( ( ( G e. Grp /\ n e. ZZ ) /\ X e. B ) -> ( n .x. X ) e. B ) |
| 7 | 6 | an32s | |- ( ( ( G e. Grp /\ X e. B ) /\ n e. ZZ ) -> ( n .x. X ) e. B ) |
| 8 | 7 | fmpttd | |- ( ( G e. Grp /\ X e. B ) -> ( n e. ZZ |-> ( n .x. X ) ) : ZZ --> B ) |
| 9 | frn | |- ( ( n e. ZZ |-> ( n .x. X ) ) : ZZ --> B -> ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) |
|
| 10 | eqss | |- ( ran ( n e. ZZ |-> ( n .x. X ) ) = B <-> ( ran ( n e. ZZ |-> ( n .x. X ) ) C_ B /\ B C_ ran ( n e. ZZ |-> ( n .x. X ) ) ) ) |
|
| 11 | 10 | baib | |- ( ran ( n e. ZZ |-> ( n .x. X ) ) C_ B -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B <-> B C_ ran ( n e. ZZ |-> ( n .x. X ) ) ) ) |
| 12 | 8 9 11 | 3syl | |- ( ( G e. Grp /\ X e. B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B <-> B C_ ran ( n e. ZZ |-> ( n .x. X ) ) ) ) |
| 13 | dfss3 | |- ( B C_ ran ( n e. ZZ |-> ( n .x. X ) ) <-> A. y e. B y e. ran ( n e. ZZ |-> ( n .x. X ) ) ) |
|
| 14 | eqid | |- ( n e. ZZ |-> ( n .x. X ) ) = ( n e. ZZ |-> ( n .x. X ) ) |
|
| 15 | ovex | |- ( n .x. X ) e. _V |
|
| 16 | 14 15 | elrnmpti | |- ( y e. ran ( n e. ZZ |-> ( n .x. X ) ) <-> E. n e. ZZ y = ( n .x. X ) ) |
| 17 | 16 | ralbii | |- ( A. y e. B y e. ran ( n e. ZZ |-> ( n .x. X ) ) <-> A. y e. B E. n e. ZZ y = ( n .x. X ) ) |
| 18 | 13 17 | bitri | |- ( B C_ ran ( n e. ZZ |-> ( n .x. X ) ) <-> A. y e. B E. n e. ZZ y = ( n .x. X ) ) |
| 19 | 12 18 | bitrdi | |- ( ( G e. Grp /\ X e. B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B <-> A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) |
| 20 | 19 | pm5.32da | |- ( G e. Grp -> ( ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |
| 21 | 4 20 | bitrid | |- ( G e. Grp -> ( X e. E <-> ( X e. B /\ A. y e. B E. n e. ZZ y = ( n .x. X ) ) ) ) |