This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | |- B = ( Base ` G ) |
|
| iscyg.2 | |- .x. = ( .g ` G ) |
||
| iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| Assertion | iscyggen | |- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | |- B = ( Base ` G ) |
|
| 2 | iscyg.2 | |- .x. = ( .g ` G ) |
|
| 3 | iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 4 | simpl | |- ( ( x = X /\ n e. ZZ ) -> x = X ) |
|
| 5 | 4 | oveq2d | |- ( ( x = X /\ n e. ZZ ) -> ( n .x. x ) = ( n .x. X ) ) |
| 6 | 5 | mpteq2dva | |- ( x = X -> ( n e. ZZ |-> ( n .x. x ) ) = ( n e. ZZ |-> ( n .x. X ) ) ) |
| 7 | 6 | rneqd | |- ( x = X -> ran ( n e. ZZ |-> ( n .x. x ) ) = ran ( n e. ZZ |-> ( n .x. X ) ) ) |
| 8 | 7 | eqeq1d | |- ( x = X -> ( ran ( n e. ZZ |-> ( n .x. x ) ) = B <-> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 9 | 8 3 | elrab2 | |- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |