This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
||
| crctcshwlkn0lem.n | |- N = ( # ` F ) |
||
| crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
||
| crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
||
| crctcshwlkn0lem.e | |- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
||
| Assertion | crctcshwlkn0lem6 | |- ( ( ph /\ J = ( N - S ) ) -> if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| 2 | crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 3 | crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
|
| 4 | crctcshwlkn0lem.n | |- N = ( # ` F ) |
|
| 5 | crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
|
| 6 | crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
|
| 7 | crctcshwlkn0lem.e | |- ( ph -> ( P ` N ) = ( P ` 0 ) ) |
|
| 8 | oveq1 | |- ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) |
|
| 9 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 10 | 8 9 | eqtrdi | |- ( i = 0 -> ( i + 1 ) = 1 ) |
| 11 | wkslem2 | |- ( ( i = 0 /\ ( i + 1 ) = 1 ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
|
| 12 | 10 11 | mpdan | |- ( i = 0 -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 13 | elfzo1 | |- ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) |
|
| 14 | simp2 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. NN ) |
|
| 15 | 13 14 | sylbi | |- ( S e. ( 1 ..^ N ) -> N e. NN ) |
| 16 | 1 15 | syl | |- ( ph -> N e. NN ) |
| 17 | lbfzo0 | |- ( 0 e. ( 0 ..^ N ) <-> N e. NN ) |
|
| 18 | 16 17 | sylibr | |- ( ph -> 0 e. ( 0 ..^ N ) ) |
| 19 | 12 6 18 | rspcdva | |- ( ph -> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 20 | eqeq1 | |- ( ( P ` N ) = ( P ` 0 ) -> ( ( P ` N ) = ( P ` 1 ) <-> ( P ` 0 ) = ( P ` 1 ) ) ) |
|
| 21 | sneq | |- ( ( P ` N ) = ( P ` 0 ) -> { ( P ` N ) } = { ( P ` 0 ) } ) |
|
| 22 | 21 | eqeq2d | |- ( ( P ` N ) = ( P ` 0 ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` N ) } <-> ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } ) ) |
| 23 | preq1 | |- ( ( P ` N ) = ( P ` 0 ) -> { ( P ` N ) , ( P ` 1 ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
|
| 24 | 23 | sseq1d | |- ( ( P ` N ) = ( P ` 0 ) -> ( { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 25 | 20 22 24 | ifpbi123d | |- ( ( P ` N ) = ( P ` 0 ) -> ( if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 26 | 7 25 | syl | |- ( ph -> ( if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 27 | 19 26 | mpbird | |- ( ph -> if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 28 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 29 | nncn | |- ( S e. NN -> S e. CC ) |
|
| 30 | npcan | |- ( ( N e. CC /\ S e. CC ) -> ( ( N - S ) + S ) = N ) |
|
| 31 | 28 29 30 | syl2anr | |- ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) + S ) = N ) |
| 32 | simpr | |- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( ( N - S ) + S ) = N ) |
|
| 33 | oveq1 | |- ( ( ( N - S ) + S ) = N -> ( ( ( N - S ) + S ) mod ( # ` F ) ) = ( N mod ( # ` F ) ) ) |
|
| 34 | 4 | eqcomi | |- ( # ` F ) = N |
| 35 | 34 | a1i | |- ( ( S e. NN /\ N e. NN ) -> ( # ` F ) = N ) |
| 36 | 35 | oveq2d | |- ( ( S e. NN /\ N e. NN ) -> ( N mod ( # ` F ) ) = ( N mod N ) ) |
| 37 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 38 | modid0 | |- ( N e. RR+ -> ( N mod N ) = 0 ) |
|
| 39 | 37 38 | syl | |- ( N e. NN -> ( N mod N ) = 0 ) |
| 40 | 39 | adantl | |- ( ( S e. NN /\ N e. NN ) -> ( N mod N ) = 0 ) |
| 41 | 36 40 | eqtrd | |- ( ( S e. NN /\ N e. NN ) -> ( N mod ( # ` F ) ) = 0 ) |
| 42 | 33 41 | sylan9eqr | |- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 ) |
| 43 | simpl | |- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( S e. NN /\ N e. NN ) ) |
|
| 44 | 32 42 43 | 3jca | |- ( ( ( S e. NN /\ N e. NN ) /\ ( ( N - S ) + S ) = N ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
| 45 | 31 44 | mpdan | |- ( ( S e. NN /\ N e. NN ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
| 47 | 13 46 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) ) |
| 48 | simp1 | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( N - S ) + S ) = N ) |
|
| 49 | 48 | fveq2d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( P ` ( ( N - S ) + S ) ) = ( P ` N ) ) |
| 50 | 49 | eqeq1d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) <-> ( P ` N ) = ( P ` 1 ) ) ) |
| 51 | simp2 | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 ) |
|
| 52 | 51 | fveq2d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) = ( F ` 0 ) ) |
| 53 | 52 | fveq2d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = ( I ` ( F ` 0 ) ) ) |
| 54 | 49 | sneqd | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> { ( P ` ( ( N - S ) + S ) ) } = { ( P ` N ) } ) |
| 55 | 53 54 | eqeq12d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } <-> ( I ` ( F ` 0 ) ) = { ( P ` N ) } ) ) |
| 56 | 49 | preq1d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } = { ( P ` N ) , ( P ` 1 ) } ) |
| 57 | 56 53 | sseq12d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) <-> { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 58 | 50 55 57 | ifpbi123d | |- ( ( ( ( N - S ) + S ) = N /\ ( ( ( N - S ) + S ) mod ( # ` F ) ) = 0 /\ ( S e. NN /\ N e. NN ) ) -> ( if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) <-> if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 59 | 1 47 58 | 3syl | |- ( ph -> ( if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) <-> if- ( ( P ` N ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` N ) } , { ( P ` N ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 60 | 27 59 | mpbird | |- ( ph -> if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) |
| 61 | nnsub | |- ( ( S e. NN /\ N e. NN ) -> ( S < N <-> ( N - S ) e. NN ) ) |
|
| 62 | 61 | biimp3a | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN ) |
| 63 | 62 | nnnn0d | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN0 ) |
| 64 | 13 63 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( N - S ) e. NN0 ) |
| 65 | 1 64 | syl | |- ( ph -> ( N - S ) e. NN0 ) |
| 66 | nn0fz0 | |- ( ( N - S ) e. NN0 <-> ( N - S ) e. ( 0 ... ( N - S ) ) ) |
|
| 67 | 65 66 | sylib | |- ( ph -> ( N - S ) e. ( 0 ... ( N - S ) ) ) |
| 68 | 1 2 | crctcshwlkn0lem2 | |- ( ( ph /\ ( N - S ) e. ( 0 ... ( N - S ) ) ) -> ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) ) |
| 69 | 67 68 | mpdan | |- ( ph -> ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) ) |
| 70 | elfzoel2 | |- ( S e. ( 1 ..^ N ) -> N e. ZZ ) |
|
| 71 | elfzoelz | |- ( S e. ( 1 ..^ N ) -> S e. ZZ ) |
|
| 72 | 70 71 | zsubcld | |- ( S e. ( 1 ..^ N ) -> ( N - S ) e. ZZ ) |
| 73 | 72 | peano2zd | |- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. ZZ ) |
| 74 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 75 | 74 | anim1i | |- ( ( N e. NN /\ S e. NN ) -> ( N e. RR /\ S e. NN ) ) |
| 76 | 75 | ancoms | |- ( ( S e. NN /\ N e. NN ) -> ( N e. RR /\ S e. NN ) ) |
| 77 | crctcshwlkn0lem1 | |- ( ( N e. RR /\ S e. NN ) -> ( ( N - S ) + 1 ) <_ N ) |
|
| 78 | 76 77 | syl | |- ( ( S e. NN /\ N e. NN ) -> ( ( N - S ) + 1 ) <_ N ) |
| 79 | 78 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( N - S ) + 1 ) <_ N ) |
| 80 | 13 79 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) <_ N ) |
| 81 | 73 70 80 | 3jca | |- ( S e. ( 1 ..^ N ) -> ( ( ( N - S ) + 1 ) e. ZZ /\ N e. ZZ /\ ( ( N - S ) + 1 ) <_ N ) ) |
| 82 | 1 81 | syl | |- ( ph -> ( ( ( N - S ) + 1 ) e. ZZ /\ N e. ZZ /\ ( ( N - S ) + 1 ) <_ N ) ) |
| 83 | eluz2 | |- ( N e. ( ZZ>= ` ( ( N - S ) + 1 ) ) <-> ( ( ( N - S ) + 1 ) e. ZZ /\ N e. ZZ /\ ( ( N - S ) + 1 ) <_ N ) ) |
|
| 84 | 82 83 | sylibr | |- ( ph -> N e. ( ZZ>= ` ( ( N - S ) + 1 ) ) ) |
| 85 | eluzfz1 | |- ( N e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> ( ( N - S ) + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) |
|
| 86 | 84 85 | syl | |- ( ph -> ( ( N - S ) + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) |
| 87 | 1 2 | crctcshwlkn0lem3 | |- ( ( ph /\ ( ( N - S ) + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` ( ( ( ( N - S ) + 1 ) + S ) - N ) ) ) |
| 88 | 86 87 | mpdan | |- ( ph -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` ( ( ( ( N - S ) + 1 ) + S ) - N ) ) ) |
| 89 | subcl | |- ( ( N e. CC /\ S e. CC ) -> ( N - S ) e. CC ) |
|
| 90 | 89 | ancoms | |- ( ( S e. CC /\ N e. CC ) -> ( N - S ) e. CC ) |
| 91 | ax-1cn | |- 1 e. CC |
|
| 92 | pncan2 | |- ( ( ( N - S ) e. CC /\ 1 e. CC ) -> ( ( ( N - S ) + 1 ) - ( N - S ) ) = 1 ) |
|
| 93 | 92 | eqcomd | |- ( ( ( N - S ) e. CC /\ 1 e. CC ) -> 1 = ( ( ( N - S ) + 1 ) - ( N - S ) ) ) |
| 94 | 90 91 93 | sylancl | |- ( ( S e. CC /\ N e. CC ) -> 1 = ( ( ( N - S ) + 1 ) - ( N - S ) ) ) |
| 95 | peano2cn | |- ( ( N - S ) e. CC -> ( ( N - S ) + 1 ) e. CC ) |
|
| 96 | 90 95 | syl | |- ( ( S e. CC /\ N e. CC ) -> ( ( N - S ) + 1 ) e. CC ) |
| 97 | simpr | |- ( ( S e. CC /\ N e. CC ) -> N e. CC ) |
|
| 98 | simpl | |- ( ( S e. CC /\ N e. CC ) -> S e. CC ) |
|
| 99 | 96 97 98 | subsub3d | |- ( ( S e. CC /\ N e. CC ) -> ( ( ( N - S ) + 1 ) - ( N - S ) ) = ( ( ( ( N - S ) + 1 ) + S ) - N ) ) |
| 100 | 94 99 | eqtr2d | |- ( ( S e. CC /\ N e. CC ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
| 101 | 29 28 100 | syl2an | |- ( ( S e. NN /\ N e. NN ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
| 102 | 101 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
| 103 | 13 102 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
| 104 | 1 103 | syl | |- ( ph -> ( ( ( ( N - S ) + 1 ) + S ) - N ) = 1 ) |
| 105 | 104 | fveq2d | |- ( ph -> ( P ` ( ( ( ( N - S ) + 1 ) + S ) - N ) ) = ( P ` 1 ) ) |
| 106 | 88 105 | eqtrd | |- ( ph -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) ) |
| 107 | 3 | fveq1i | |- ( H ` ( N - S ) ) = ( ( F cyclShift S ) ` ( N - S ) ) |
| 108 | 5 | adantr | |- ( ( ph /\ S e. ( 1 ..^ N ) ) -> F e. Word A ) |
| 109 | 71 | adantl | |- ( ( ph /\ S e. ( 1 ..^ N ) ) -> S e. ZZ ) |
| 110 | elfzofz | |- ( S e. ( 1 ..^ N ) -> S e. ( 1 ... N ) ) |
|
| 111 | ubmelfzo | |- ( S e. ( 1 ... N ) -> ( N - S ) e. ( 0 ..^ N ) ) |
|
| 112 | 110 111 | syl | |- ( S e. ( 1 ..^ N ) -> ( N - S ) e. ( 0 ..^ N ) ) |
| 113 | 112 | adantl | |- ( ( ph /\ S e. ( 1 ..^ N ) ) -> ( N - S ) e. ( 0 ..^ N ) ) |
| 114 | 34 | oveq2i | |- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) |
| 115 | 113 114 | eleqtrrdi | |- ( ( ph /\ S e. ( 1 ..^ N ) ) -> ( N - S ) e. ( 0 ..^ ( # ` F ) ) ) |
| 116 | cshwidxmod | |- ( ( F e. Word A /\ S e. ZZ /\ ( N - S ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
|
| 117 | 108 109 115 116 | syl3anc | |- ( ( ph /\ S e. ( 1 ..^ N ) ) -> ( ( F cyclShift S ) ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
| 118 | 1 117 | mpdan | |- ( ph -> ( ( F cyclShift S ) ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
| 119 | 107 118 | eqtrid | |- ( ph -> ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
| 120 | simp1 | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) ) |
|
| 121 | simp2 | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) ) |
|
| 122 | 120 121 | eqeq12d | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) <-> ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) ) ) |
| 123 | simp3 | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) |
|
| 124 | 123 | fveq2d | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( I ` ( H ` ( N - S ) ) ) = ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) |
| 125 | 120 | sneqd | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> { ( Q ` ( N - S ) ) } = { ( P ` ( ( N - S ) + S ) ) } ) |
| 126 | 124 125 | eqeq12d | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } <-> ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } ) ) |
| 127 | 120 121 | preq12d | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } = { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } ) |
| 128 | 127 124 | sseq12d | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) <-> { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) |
| 129 | 122 126 128 | ifpbi123d | |- ( ( ( Q ` ( N - S ) ) = ( P ` ( ( N - S ) + S ) ) /\ ( Q ` ( ( N - S ) + 1 ) ) = ( P ` 1 ) /\ ( H ` ( N - S ) ) = ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) -> ( if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) <-> if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) ) |
| 130 | 69 106 119 129 | syl3anc | |- ( ph -> ( if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) <-> if- ( ( P ` ( ( N - S ) + S ) ) = ( P ` 1 ) , ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) = { ( P ` ( ( N - S ) + S ) ) } , { ( P ` ( ( N - S ) + S ) ) , ( P ` 1 ) } C_ ( I ` ( F ` ( ( ( N - S ) + S ) mod ( # ` F ) ) ) ) ) ) ) |
| 131 | 60 130 | mpbird | |- ( ph -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
| 132 | 131 | adantr | |- ( ( ph /\ J = ( N - S ) ) -> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) |
| 133 | wkslem1 | |- ( J = ( N - S ) -> ( if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) ) |
|
| 134 | 133 | adantl | |- ( ( ph /\ J = ( N - S ) ) -> ( if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) <-> if- ( ( Q ` ( N - S ) ) = ( Q ` ( ( N - S ) + 1 ) ) , ( I ` ( H ` ( N - S ) ) ) = { ( Q ` ( N - S ) ) } , { ( Q ` ( N - S ) ) , ( Q ` ( ( N - S ) + 1 ) ) } C_ ( I ` ( H ` ( N - S ) ) ) ) ) ) |
| 135 | 132 134 | mpbird | |- ( ( ph /\ J = ( N - S ) ) -> if- ( ( Q ` J ) = ( Q ` ( J + 1 ) ) , ( I ` ( H ` J ) ) = { ( Q ` J ) } , { ( Q ` J ) , ( Q ` ( J + 1 ) ) } C_ ( I ` ( H ` J ) ) ) ) |