This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a half-open integer range based at 1. (Contributed by Thierry Arnoux, 14-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo1 | |- ( N e. ( 1 ..^ M ) <-> ( N e. NN /\ M e. NN /\ N < M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzossnn | |- ( 1 ..^ M ) C_ NN |
|
| 2 | 1 | sseli | |- ( N e. ( 1 ..^ M ) -> N e. NN ) |
| 3 | elfzouz2 | |- ( N e. ( 1 ..^ M ) -> M e. ( ZZ>= ` N ) ) |
|
| 4 | eluznn | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. NN ) |
|
| 5 | 2 3 4 | syl2anc | |- ( N e. ( 1 ..^ M ) -> M e. NN ) |
| 6 | elfzolt2 | |- ( N e. ( 1 ..^ M ) -> N < M ) |
|
| 7 | 2 5 6 | 3jca | |- ( N e. ( 1 ..^ M ) -> ( N e. NN /\ M e. NN /\ N < M ) ) |
| 8 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 9 | 8 | eqimssi | |- NN C_ ( ZZ>= ` 1 ) |
| 10 | 9 | sseli | |- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 11 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 12 | id | |- ( N < M -> N < M ) |
|
| 13 | 10 11 12 | 3anim123i | |- ( ( N e. NN /\ M e. NN /\ N < M ) -> ( N e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ N < M ) ) |
| 14 | elfzo2 | |- ( N e. ( 1 ..^ M ) <-> ( N e. ( ZZ>= ` 1 ) /\ M e. ZZ /\ N < M ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( N e. NN /\ M e. NN /\ N < M ) -> N e. ( 1 ..^ M ) ) |
| 16 | 7 15 | impbii | |- ( N e. ( 1 ..^ M ) <-> ( N e. NN /\ M e. NN /\ N < M ) ) |