This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
||
| crctcshwlkn0lem.n | |- N = ( # ` F ) |
||
| crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
||
| crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
||
| Assertion | crctcshwlkn0lem5 | |- ( ph -> A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| 2 | crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 3 | crctcshwlkn0lem.h | |- H = ( F cyclShift S ) |
|
| 4 | crctcshwlkn0lem.n | |- N = ( # ` F ) |
|
| 5 | crctcshwlkn0lem.f | |- ( ph -> F e. Word A ) |
|
| 6 | crctcshwlkn0lem.p | |- ( ph -> A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) ) |
|
| 7 | elfzoelz | |- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> j e. ZZ ) |
|
| 8 | 7 | zcnd | |- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> j e. CC ) |
| 9 | 8 | adantl | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. CC ) |
| 10 | 1cnd | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> 1 e. CC ) |
|
| 11 | elfzoelz | |- ( S e. ( 1 ..^ N ) -> S e. ZZ ) |
|
| 12 | 11 | zcnd | |- ( S e. ( 1 ..^ N ) -> S e. CC ) |
| 13 | 12 | adantr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> S e. CC ) |
| 14 | elfzoel2 | |- ( S e. ( 1 ..^ N ) -> N e. ZZ ) |
|
| 15 | 14 | zcnd | |- ( S e. ( 1 ..^ N ) -> N e. CC ) |
| 16 | 15 | adantr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N e. CC ) |
| 17 | 9 10 13 16 | 2addsubd | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + 1 ) + S ) - N ) = ( ( ( j + S ) - N ) + 1 ) ) |
| 18 | 17 | eqcomd | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) |
| 19 | elfzo1 | |- ( S e. ( 1 ..^ N ) <-> ( S e. NN /\ N e. NN /\ S < N ) ) |
|
| 20 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 21 | 20 | 3ad2ant2 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. ZZ ) |
| 22 | 21 | adantr | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N e. ZZ ) |
| 23 | 7 | adantl | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. ZZ ) |
| 24 | nnz | |- ( S e. NN -> S e. ZZ ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> S e. ZZ ) |
| 26 | 25 | adantr | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> S e. ZZ ) |
| 27 | 23 26 | zaddcld | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( j + S ) e. ZZ ) |
| 28 | elfzo2 | |- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) <-> ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) |
|
| 29 | eluz2 | |- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) <-> ( ( ( N - S ) + 1 ) e. ZZ /\ j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) ) |
|
| 30 | zre | |- ( j e. ZZ -> j e. RR ) |
|
| 31 | nnre | |- ( S e. NN -> S e. RR ) |
|
| 32 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 33 | 31 32 | anim12i | |- ( ( S e. NN /\ N e. NN ) -> ( S e. RR /\ N e. RR ) ) |
| 34 | simplr | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> N e. RR ) |
|
| 35 | simpll | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> S e. RR ) |
|
| 36 | 34 35 | resubcld | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( N - S ) e. RR ) |
| 37 | 36 | lep1d | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( N - S ) <_ ( ( N - S ) + 1 ) ) |
| 38 | 1red | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> 1 e. RR ) |
|
| 39 | 36 38 | readdcld | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( N - S ) + 1 ) e. RR ) |
| 40 | simpr | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> j e. RR ) |
|
| 41 | letr | |- ( ( ( N - S ) e. RR /\ ( ( N - S ) + 1 ) e. RR /\ j e. RR ) -> ( ( ( N - S ) <_ ( ( N - S ) + 1 ) /\ ( ( N - S ) + 1 ) <_ j ) -> ( N - S ) <_ j ) ) |
|
| 42 | 36 39 40 41 | syl3anc | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( ( N - S ) <_ ( ( N - S ) + 1 ) /\ ( ( N - S ) + 1 ) <_ j ) -> ( N - S ) <_ j ) ) |
| 43 | 37 42 | mpand | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( ( N - S ) + 1 ) <_ j -> ( N - S ) <_ j ) ) |
| 44 | 34 35 40 | lesubaddd | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( N - S ) <_ j <-> N <_ ( j + S ) ) ) |
| 45 | 43 44 | sylibd | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. RR ) -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) |
| 46 | 45 | ex | |- ( ( S e. RR /\ N e. RR ) -> ( j e. RR -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
| 47 | 33 46 | syl | |- ( ( S e. NN /\ N e. NN ) -> ( j e. RR -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
| 48 | 47 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. RR -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
| 49 | 30 48 | syl5com | |- ( j e. ZZ -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( ( N - S ) + 1 ) <_ j -> N <_ ( j + S ) ) ) ) |
| 50 | 49 | com23 | |- ( j e. ZZ -> ( ( ( N - S ) + 1 ) <_ j -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) ) |
| 51 | 50 | imp | |- ( ( j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
| 52 | 51 | 3adant1 | |- ( ( ( ( N - S ) + 1 ) e. ZZ /\ j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
| 53 | 29 52 | sylbi | |- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
| 54 | 53 | 3ad2ant1 | |- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> N <_ ( j + S ) ) ) |
| 55 | 54 | com12 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> N <_ ( j + S ) ) ) |
| 56 | 28 55 | biimtrid | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> N <_ ( j + S ) ) ) |
| 57 | 56 | imp | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N <_ ( j + S ) ) |
| 58 | eluz2 | |- ( ( j + S ) e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ ( j + S ) e. ZZ /\ N <_ ( j + S ) ) ) |
|
| 59 | 22 27 57 58 | syl3anbrc | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( j + S ) e. ( ZZ>= ` N ) ) |
| 60 | uznn0sub | |- ( ( j + S ) e. ( ZZ>= ` N ) -> ( ( j + S ) - N ) e. NN0 ) |
|
| 61 | 59 60 | syl | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) - N ) e. NN0 ) |
| 62 | simpl2 | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> N e. NN ) |
|
| 63 | 30 | adantl | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> j e. RR ) |
| 64 | simpll | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> S e. RR ) |
|
| 65 | ax-1 | |- ( N e. RR -> ( S e. RR -> N e. RR ) ) |
|
| 66 | 65 | imdistanri | |- ( ( S e. RR /\ N e. RR ) -> ( N e. RR /\ N e. RR ) ) |
| 67 | 66 | adantr | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( N e. RR /\ N e. RR ) ) |
| 68 | lt2add | |- ( ( ( j e. RR /\ S e. RR ) /\ ( N e. RR /\ N e. RR ) ) -> ( ( j < N /\ S < N ) -> ( j + S ) < ( N + N ) ) ) |
|
| 69 | 63 64 67 68 | syl21anc | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( ( j < N /\ S < N ) -> ( j + S ) < ( N + N ) ) ) |
| 70 | 63 64 | readdcld | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( j + S ) e. RR ) |
| 71 | simplr | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> N e. RR ) |
|
| 72 | 70 71 71 | ltsubaddd | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( ( ( j + S ) - N ) < N <-> ( j + S ) < ( N + N ) ) ) |
| 73 | 69 72 | sylibrd | |- ( ( ( S e. RR /\ N e. RR ) /\ j e. ZZ ) -> ( ( j < N /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
| 74 | 73 | ex | |- ( ( S e. RR /\ N e. RR ) -> ( j e. ZZ -> ( ( j < N /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
| 75 | 74 | com23 | |- ( ( S e. RR /\ N e. RR ) -> ( ( j < N /\ S < N ) -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) |
| 76 | 75 | expcomd | |- ( ( S e. RR /\ N e. RR ) -> ( S < N -> ( j < N -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) ) |
| 77 | 33 76 | syl | |- ( ( S e. NN /\ N e. NN ) -> ( S < N -> ( j < N -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) ) |
| 78 | 77 | 3impia | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j < N -> ( j e. ZZ -> ( ( j + S ) - N ) < N ) ) ) |
| 79 | 78 | com13 | |- ( j e. ZZ -> ( j < N -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
| 80 | 79 | 3ad2ant2 | |- ( ( ( ( N - S ) + 1 ) e. ZZ /\ j e. ZZ /\ ( ( N - S ) + 1 ) <_ j ) -> ( j < N -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
| 81 | 29 80 | sylbi | |- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> ( j < N -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) ) |
| 82 | 81 | imp | |- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ j < N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
| 83 | 82 | 3adant2 | |- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
| 84 | 28 83 | sylbi | |- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j + S ) - N ) < N ) ) |
| 85 | 84 | impcom | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) - N ) < N ) |
| 86 | 61 62 85 | 3jca | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) - N ) e. NN0 /\ N e. NN /\ ( ( j + S ) - N ) < N ) ) |
| 87 | 19 86 | sylanb | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) - N ) e. NN0 /\ N e. NN /\ ( ( j + S ) - N ) < N ) ) |
| 88 | elfzo0 | |- ( ( ( j + S ) - N ) e. ( 0 ..^ N ) <-> ( ( ( j + S ) - N ) e. NN0 /\ N e. NN /\ ( ( j + S ) - N ) < N ) ) |
|
| 89 | 87 88 | sylibr | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) - N ) e. ( 0 ..^ N ) ) |
| 90 | 89 | adantr | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( ( j + S ) - N ) e. ( 0 ..^ N ) ) |
| 91 | fveq2 | |- ( i = ( ( j + S ) - N ) -> ( P ` i ) = ( P ` ( ( j + S ) - N ) ) ) |
|
| 92 | 91 | adantl | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( P ` i ) = ( P ` ( ( j + S ) - N ) ) ) |
| 93 | fvoveq1 | |- ( i = ( ( j + S ) - N ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( j + S ) - N ) + 1 ) ) ) |
|
| 94 | simpr | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) |
|
| 95 | 94 | fveq2d | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( P ` ( ( ( j + S ) - N ) + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
| 96 | 93 95 | sylan9eqr | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( P ` ( i + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
| 97 | 92 96 | eqeq12d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( ( P ` i ) = ( P ` ( i + 1 ) ) <-> ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) ) |
| 98 | 2fveq3 | |- ( i = ( ( j + S ) - N ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
|
| 99 | 91 | sneqd | |- ( i = ( ( j + S ) - N ) -> { ( P ` i ) } = { ( P ` ( ( j + S ) - N ) ) } ) |
| 100 | 98 99 | eqeq12d | |- ( i = ( ( j + S ) - N ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } ) ) |
| 101 | 100 | adantl | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( ( I ` ( F ` i ) ) = { ( P ` i ) } <-> ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } ) ) |
| 102 | 92 96 | preq12d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } ) |
| 103 | simpr | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> i = ( ( j + S ) - N ) ) |
|
| 104 | 103 | fveq2d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( F ` i ) = ( F ` ( ( j + S ) - N ) ) ) |
| 105 | 104 | fveq2d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( I ` ( F ` i ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
| 106 | 102 105 | sseq12d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) <-> { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) |
| 107 | 97 101 106 | ifpbi123d | |- ( ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) /\ i = ( ( j + S ) - N ) ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) <-> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 108 | 90 107 | rspcdv | |- ( ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) /\ ( ( ( j + S ) - N ) + 1 ) = ( ( ( j + 1 ) + S ) - N ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 109 | 18 108 | mpdan | |- ( ( S e. ( 1 ..^ N ) /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 110 | 1 109 | sylan | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 111 | 110 | ex | |- ( ph -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( A. i e. ( 0 ..^ N ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( I ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( I ` ( F ` i ) ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) ) |
| 112 | 6 111 | mpid | |- ( ph -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 113 | 112 | imp | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) |
| 114 | elfzofz | |- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> j e. ( ( ( N - S ) + 1 ) ... N ) ) |
|
| 115 | 1 2 | crctcshwlkn0lem3 | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ... N ) ) -> ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) ) |
| 116 | 114 115 | sylan2 | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) ) |
| 117 | fzofzp1 | |- ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( j + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) |
|
| 118 | 1 2 | crctcshwlkn0lem3 | |- ( ( ph /\ ( j + 1 ) e. ( ( ( N - S ) + 1 ) ... N ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
| 119 | 117 118 | sylan2 | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
| 120 | 3 | fveq1i | |- ( H ` j ) = ( ( F cyclShift S ) ` j ) |
| 121 | 5 | adantr | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> F e. Word A ) |
| 122 | 1 11 | syl | |- ( ph -> S e. ZZ ) |
| 123 | 122 | adantr | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> S e. ZZ ) |
| 124 | ltle | |- ( ( S e. RR /\ N e. RR ) -> ( S < N -> S <_ N ) ) |
|
| 125 | 33 124 | syl | |- ( ( S e. NN /\ N e. NN ) -> ( S < N -> S <_ N ) ) |
| 126 | 125 | 3impia | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> S <_ N ) |
| 127 | nnnn0 | |- ( S e. NN -> S e. NN0 ) |
|
| 128 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 129 | 127 128 | anim12i | |- ( ( S e. NN /\ N e. NN ) -> ( S e. NN0 /\ N e. NN0 ) ) |
| 130 | 129 | 3adant3 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( S e. NN0 /\ N e. NN0 ) ) |
| 131 | nn0sub | |- ( ( S e. NN0 /\ N e. NN0 ) -> ( S <_ N <-> ( N - S ) e. NN0 ) ) |
|
| 132 | 130 131 | syl | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( S <_ N <-> ( N - S ) e. NN0 ) ) |
| 133 | 126 132 | mpbid | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( N - S ) e. NN0 ) |
| 134 | 19 133 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( N - S ) e. NN0 ) |
| 135 | 1nn0 | |- 1 e. NN0 |
|
| 136 | 135 | a1i | |- ( S e. ( 1 ..^ N ) -> 1 e. NN0 ) |
| 137 | 134 136 | nn0addcld | |- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. NN0 ) |
| 138 | elnn0uz | |- ( ( ( N - S ) + 1 ) e. NN0 <-> ( ( N - S ) + 1 ) e. ( ZZ>= ` 0 ) ) |
|
| 139 | 137 138 | sylib | |- ( S e. ( 1 ..^ N ) -> ( ( N - S ) + 1 ) e. ( ZZ>= ` 0 ) ) |
| 140 | fzoss1 | |- ( ( ( N - S ) + 1 ) e. ( ZZ>= ` 0 ) -> ( ( ( N - S ) + 1 ) ..^ N ) C_ ( 0 ..^ N ) ) |
|
| 141 | 1 139 140 | 3syl | |- ( ph -> ( ( ( N - S ) + 1 ) ..^ N ) C_ ( 0 ..^ N ) ) |
| 142 | 141 | sselda | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. ( 0 ..^ N ) ) |
| 143 | 4 | oveq2i | |- ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) |
| 144 | 142 143 | eleqtrdi | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> j e. ( 0 ..^ ( # ` F ) ) ) |
| 145 | cshwidxmod | |- ( ( F e. Word A /\ S e. ZZ /\ j e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
|
| 146 | 121 123 144 145 | syl3anc | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) mod ( # ` F ) ) ) ) |
| 147 | 4 | eqcomi | |- ( # ` F ) = N |
| 148 | 147 | oveq2i | |- ( ( j + S ) mod ( # ` F ) ) = ( ( j + S ) mod N ) |
| 149 | eluzelre | |- ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) -> j e. RR ) |
|
| 150 | 149 | 3ad2ant1 | |- ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> j e. RR ) |
| 151 | 150 | adantl | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> j e. RR ) |
| 152 | 31 | 3ad2ant1 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> S e. RR ) |
| 153 | 152 | adantr | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> S e. RR ) |
| 154 | 151 153 | readdcld | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( j + S ) e. RR ) |
| 155 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 156 | 155 | 3ad2ant2 | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> N e. RR+ ) |
| 157 | 156 | adantr | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> N e. RR+ ) |
| 158 | 54 | impcom | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> N <_ ( j + S ) ) |
| 159 | 157 | rpred | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> N e. RR ) |
| 160 | simpr3 | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> j < N ) |
|
| 161 | simpl3 | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> S < N ) |
|
| 162 | 151 153 159 160 161 | lt2addmuld | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( j + S ) < ( 2 x. N ) ) |
| 163 | 158 162 | jca | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) |
| 164 | 154 157 163 | jca31 | |- ( ( ( S e. NN /\ N e. NN /\ S < N ) /\ ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) |
| 165 | 164 | ex | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( ( j e. ( ZZ>= ` ( ( N - S ) + 1 ) ) /\ N e. ZZ /\ j < N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
| 166 | 28 165 | biimtrid | |- ( ( S e. NN /\ N e. NN /\ S < N ) -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
| 167 | 19 166 | sylbi | |- ( S e. ( 1 ..^ N ) -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
| 168 | 1 167 | syl | |- ( ph -> ( j e. ( ( ( N - S ) + 1 ) ..^ N ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) ) |
| 169 | 168 | imp | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) ) |
| 170 | 2submod | |- ( ( ( ( j + S ) e. RR /\ N e. RR+ ) /\ ( N <_ ( j + S ) /\ ( j + S ) < ( 2 x. N ) ) ) -> ( ( j + S ) mod N ) = ( ( j + S ) - N ) ) |
|
| 171 | 169 170 | syl | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) mod N ) = ( ( j + S ) - N ) ) |
| 172 | 148 171 | eqtrid | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( j + S ) mod ( # ` F ) ) = ( ( j + S ) - N ) ) |
| 173 | 172 | fveq2d | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( F ` ( ( j + S ) mod ( # ` F ) ) ) = ( F ` ( ( j + S ) - N ) ) ) |
| 174 | 146 173 | eqtrd | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( ( F cyclShift S ) ` j ) = ( F ` ( ( j + S ) - N ) ) ) |
| 175 | 120 174 | eqtrid | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( H ` j ) = ( F ` ( ( j + S ) - N ) ) ) |
| 176 | 175 | fveq2d | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
| 177 | simp1 | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) ) |
|
| 178 | simp2 | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) |
|
| 179 | 177 178 | eqeq12d | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( ( Q ` j ) = ( Q ` ( j + 1 ) ) <-> ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) ) ) |
| 180 | simp3 | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) |
|
| 181 | 177 | sneqd | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> { ( Q ` j ) } = { ( P ` ( ( j + S ) - N ) ) } ) |
| 182 | 180 181 | eqeq12d | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( ( I ` ( H ` j ) ) = { ( Q ` j ) } <-> ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } ) ) |
| 183 | 177 178 | preq12d | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> { ( Q ` j ) , ( Q ` ( j + 1 ) ) } = { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } ) |
| 184 | 183 180 | sseq12d | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) <-> { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) |
| 185 | 179 182 184 | ifpbi123d | |- ( ( ( Q ` j ) = ( P ` ( ( j + S ) - N ) ) /\ ( Q ` ( j + 1 ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) /\ ( I ` ( H ` j ) ) = ( I ` ( F ` ( ( j + S ) - N ) ) ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 186 | 116 119 176 185 | syl3anc | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> ( if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) <-> if- ( ( P ` ( ( j + S ) - N ) ) = ( P ` ( ( ( j + 1 ) + S ) - N ) ) , ( I ` ( F ` ( ( j + S ) - N ) ) ) = { ( P ` ( ( j + S ) - N ) ) } , { ( P ` ( ( j + S ) - N ) ) , ( P ` ( ( ( j + 1 ) + S ) - N ) ) } C_ ( I ` ( F ` ( ( j + S ) - N ) ) ) ) ) ) |
| 187 | 113 186 | mpbird | |- ( ( ph /\ j e. ( ( ( N - S ) + 1 ) ..^ N ) ) -> if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |
| 188 | 187 | ralrimiva | |- ( ph -> A. j e. ( ( ( N - S ) + 1 ) ..^ N ) if- ( ( Q ` j ) = ( Q ` ( j + 1 ) ) , ( I ` ( H ` j ) ) = { ( Q ` j ) } , { ( Q ` j ) , ( Q ` ( j + 1 ) ) } C_ ( I ` ( H ` j ) ) ) ) |