This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 13-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crctcshwlkn0lem1 | |- ( ( A e. RR /\ B e. NN ) -> ( ( A - B ) + 1 ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ B e. NN ) -> A e. CC ) |
| 3 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 4 | 3 | adantl | |- ( ( A e. RR /\ B e. NN ) -> B e. CC ) |
| 5 | 1cnd | |- ( ( A e. RR /\ B e. NN ) -> 1 e. CC ) |
|
| 6 | subsub | |- ( ( A e. CC /\ B e. CC /\ 1 e. CC ) -> ( A - ( B - 1 ) ) = ( ( A - B ) + 1 ) ) |
|
| 7 | 6 | eqcomd | |- ( ( A e. CC /\ B e. CC /\ 1 e. CC ) -> ( ( A - B ) + 1 ) = ( A - ( B - 1 ) ) ) |
| 8 | 2 4 5 7 | syl3anc | |- ( ( A e. RR /\ B e. NN ) -> ( ( A - B ) + 1 ) = ( A - ( B - 1 ) ) ) |
| 9 | nnm1ge0 | |- ( B e. NN -> 0 <_ ( B - 1 ) ) |
|
| 10 | 9 | adantl | |- ( ( A e. RR /\ B e. NN ) -> 0 <_ ( B - 1 ) ) |
| 11 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 12 | peano2rem | |- ( B e. RR -> ( B - 1 ) e. RR ) |
|
| 13 | 11 12 | syl | |- ( B e. NN -> ( B - 1 ) e. RR ) |
| 14 | subge02 | |- ( ( A e. RR /\ ( B - 1 ) e. RR ) -> ( 0 <_ ( B - 1 ) <-> ( A - ( B - 1 ) ) <_ A ) ) |
|
| 15 | 14 | bicomd | |- ( ( A e. RR /\ ( B - 1 ) e. RR ) -> ( ( A - ( B - 1 ) ) <_ A <-> 0 <_ ( B - 1 ) ) ) |
| 16 | 13 15 | sylan2 | |- ( ( A e. RR /\ B e. NN ) -> ( ( A - ( B - 1 ) ) <_ A <-> 0 <_ ( B - 1 ) ) ) |
| 17 | 10 16 | mpbird | |- ( ( A e. RR /\ B e. NN ) -> ( A - ( B - 1 ) ) <_ A ) |
| 18 | 8 17 | eqbrtrd | |- ( ( A e. RR /\ B e. NN ) -> ( ( A - B ) + 1 ) <_ A ) |