This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between addition and subtraction. (Contributed by NM, 17-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddsub | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lesubadd | |- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) <_ A <-> C <_ ( A + B ) ) ) |
|
| 2 | 1 | 3com13 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) <_ A <-> C <_ ( A + B ) ) ) |
| 3 | resubcl | |- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
|
| 4 | lenlt | |- ( ( ( C - B ) e. RR /\ A e. RR ) -> ( ( C - B ) <_ A <-> -. A < ( C - B ) ) ) |
|
| 5 | 3 4 | stoic3 | |- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) <_ A <-> -. A < ( C - B ) ) ) |
| 6 | 5 | 3com13 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) <_ A <-> -. A < ( C - B ) ) ) |
| 7 | readdcl | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
|
| 8 | lenlt | |- ( ( C e. RR /\ ( A + B ) e. RR ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( C e. RR /\ ( A e. RR /\ B e. RR ) ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
| 10 | 9 | 3impb | |- ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
| 11 | 10 | 3coml | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C <_ ( A + B ) <-> -. ( A + B ) < C ) ) |
| 12 | 2 6 11 | 3bitr3rd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( A + B ) < C <-> -. A < ( C - B ) ) ) |
| 13 | 12 | con4bid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < C <-> A < ( C - B ) ) ) |