This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zmodid2 | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ... ( N - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 2 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 3 | modid2 | |- ( ( M e. RR /\ N e. RR+ ) -> ( ( M mod N ) = M <-> ( 0 <_ M /\ M < N ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> ( 0 <_ M /\ M < N ) ) ) |
| 5 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | elfzm11 | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( M e. ( 0 ... ( N - 1 ) ) <-> ( M e. ZZ /\ 0 <_ M /\ M < N ) ) ) |
|
| 8 | 6 7 | mpan | |- ( N e. ZZ -> ( M e. ( 0 ... ( N - 1 ) ) <-> ( M e. ZZ /\ 0 <_ M /\ M < N ) ) ) |
| 9 | 3anass | |- ( ( M e. ZZ /\ 0 <_ M /\ M < N ) <-> ( M e. ZZ /\ ( 0 <_ M /\ M < N ) ) ) |
|
| 10 | 8 9 | bitrdi | |- ( N e. ZZ -> ( M e. ( 0 ... ( N - 1 ) ) <-> ( M e. ZZ /\ ( 0 <_ M /\ M < N ) ) ) ) |
| 11 | 5 10 | syl | |- ( N e. NN -> ( M e. ( 0 ... ( N - 1 ) ) <-> ( M e. ZZ /\ ( 0 <_ M /\ M < N ) ) ) ) |
| 12 | ibar | |- ( M e. ZZ -> ( ( 0 <_ M /\ M < N ) <-> ( M e. ZZ /\ ( 0 <_ M /\ M < N ) ) ) ) |
|
| 13 | 12 | bicomd | |- ( M e. ZZ -> ( ( M e. ZZ /\ ( 0 <_ M /\ M < N ) ) <-> ( 0 <_ M /\ M < N ) ) ) |
| 14 | 11 13 | sylan9bbr | |- ( ( M e. ZZ /\ N e. NN ) -> ( M e. ( 0 ... ( N - 1 ) ) <-> ( 0 <_ M /\ M < N ) ) ) |
| 15 | 4 14 | bitr4d | |- ( ( M e. ZZ /\ N e. NN ) -> ( ( M mod N ) = M <-> M e. ( 0 ... ( N - 1 ) ) ) ) |