This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| Assertion | crctcshwlkn0lem2 | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> ( Q ` J ) = ( P ` ( J + S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcshwlkn0lem.s | |- ( ph -> S e. ( 1 ..^ N ) ) |
|
| 2 | crctcshwlkn0lem.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 3 | breq1 | |- ( x = J -> ( x <_ ( N - S ) <-> J <_ ( N - S ) ) ) |
|
| 4 | fvoveq1 | |- ( x = J -> ( P ` ( x + S ) ) = ( P ` ( J + S ) ) ) |
|
| 5 | oveq1 | |- ( x = J -> ( x + S ) = ( J + S ) ) |
|
| 6 | 5 | fvoveq1d | |- ( x = J -> ( P ` ( ( x + S ) - N ) ) = ( P ` ( ( J + S ) - N ) ) ) |
| 7 | 3 4 6 | ifbieq12d | |- ( x = J -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = if ( J <_ ( N - S ) , ( P ` ( J + S ) ) , ( P ` ( ( J + S ) - N ) ) ) ) |
| 8 | fzo0ss1 | |- ( 1 ..^ N ) C_ ( 0 ..^ N ) |
|
| 9 | 8 | sseli | |- ( S e. ( 1 ..^ N ) -> S e. ( 0 ..^ N ) ) |
| 10 | elfzoel2 | |- ( S e. ( 0 ..^ N ) -> N e. ZZ ) |
|
| 11 | elfzonn0 | |- ( S e. ( 0 ..^ N ) -> S e. NN0 ) |
|
| 12 | eluzmn | |- ( ( N e. ZZ /\ S e. NN0 ) -> N e. ( ZZ>= ` ( N - S ) ) ) |
|
| 13 | 10 11 12 | syl2anc | |- ( S e. ( 0 ..^ N ) -> N e. ( ZZ>= ` ( N - S ) ) ) |
| 14 | fzss2 | |- ( N e. ( ZZ>= ` ( N - S ) ) -> ( 0 ... ( N - S ) ) C_ ( 0 ... N ) ) |
|
| 15 | 13 14 | syl | |- ( S e. ( 0 ..^ N ) -> ( 0 ... ( N - S ) ) C_ ( 0 ... N ) ) |
| 16 | 15 | sseld | |- ( S e. ( 0 ..^ N ) -> ( J e. ( 0 ... ( N - S ) ) -> J e. ( 0 ... N ) ) ) |
| 17 | 1 9 16 | 3syl | |- ( ph -> ( J e. ( 0 ... ( N - S ) ) -> J e. ( 0 ... N ) ) ) |
| 18 | 17 | imp | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> J e. ( 0 ... N ) ) |
| 19 | fvex | |- ( P ` ( J + S ) ) e. _V |
|
| 20 | fvex | |- ( P ` ( ( J + S ) - N ) ) e. _V |
|
| 21 | 19 20 | ifex | |- if ( J <_ ( N - S ) , ( P ` ( J + S ) ) , ( P ` ( ( J + S ) - N ) ) ) e. _V |
| 22 | 21 | a1i | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> if ( J <_ ( N - S ) , ( P ` ( J + S ) ) , ( P ` ( ( J + S ) - N ) ) ) e. _V ) |
| 23 | 2 7 18 22 | fvmptd3 | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> ( Q ` J ) = if ( J <_ ( N - S ) , ( P ` ( J + S ) ) , ( P ` ( ( J + S ) - N ) ) ) ) |
| 24 | elfzle2 | |- ( J e. ( 0 ... ( N - S ) ) -> J <_ ( N - S ) ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> J <_ ( N - S ) ) |
| 26 | 25 | iftrued | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> if ( J <_ ( N - S ) , ( P ` ( J + S ) ) , ( P ` ( ( J + S ) - N ) ) ) = ( P ` ( J + S ) ) ) |
| 27 | 23 26 | eqtrd | |- ( ( ph /\ J e. ( 0 ... ( N - S ) ) ) -> ( Q ` J ) = ( P ` ( J + S ) ) ) |