This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Pasting lemma. If A and B are closed sets in X with A u. B = X , then any function whose restrictions to A and B are continuous is continuous on all of X . (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paste.1 | |- X = U. J |
|
| paste.2 | |- Y = U. K |
||
| paste.4 | |- ( ph -> A e. ( Clsd ` J ) ) |
||
| paste.5 | |- ( ph -> B e. ( Clsd ` J ) ) |
||
| paste.6 | |- ( ph -> ( A u. B ) = X ) |
||
| paste.7 | |- ( ph -> F : X --> Y ) |
||
| paste.8 | |- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
||
| paste.9 | |- ( ph -> ( F |` B ) e. ( ( J |`t B ) Cn K ) ) |
||
| Assertion | paste | |- ( ph -> F e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paste.1 | |- X = U. J |
|
| 2 | paste.2 | |- Y = U. K |
|
| 3 | paste.4 | |- ( ph -> A e. ( Clsd ` J ) ) |
|
| 4 | paste.5 | |- ( ph -> B e. ( Clsd ` J ) ) |
|
| 5 | paste.6 | |- ( ph -> ( A u. B ) = X ) |
|
| 6 | paste.7 | |- ( ph -> F : X --> Y ) |
|
| 7 | paste.8 | |- ( ph -> ( F |` A ) e. ( ( J |`t A ) Cn K ) ) |
|
| 8 | paste.9 | |- ( ph -> ( F |` B ) e. ( ( J |`t B ) Cn K ) ) |
|
| 9 | 5 | ineq2d | |- ( ph -> ( ( `' F " y ) i^i ( A u. B ) ) = ( ( `' F " y ) i^i X ) ) |
| 10 | indi | |- ( ( `' F " y ) i^i ( A u. B ) ) = ( ( ( `' F " y ) i^i A ) u. ( ( `' F " y ) i^i B ) ) |
|
| 11 | 6 | ffund | |- ( ph -> Fun F ) |
| 12 | respreima | |- ( Fun F -> ( `' ( F |` A ) " y ) = ( ( `' F " y ) i^i A ) ) |
|
| 13 | respreima | |- ( Fun F -> ( `' ( F |` B ) " y ) = ( ( `' F " y ) i^i B ) ) |
|
| 14 | 12 13 | uneq12d | |- ( Fun F -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) = ( ( ( `' F " y ) i^i A ) u. ( ( `' F " y ) i^i B ) ) ) |
| 15 | 11 14 | syl | |- ( ph -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) = ( ( ( `' F " y ) i^i A ) u. ( ( `' F " y ) i^i B ) ) ) |
| 16 | 10 15 | eqtr4id | |- ( ph -> ( ( `' F " y ) i^i ( A u. B ) ) = ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) ) |
| 17 | imassrn | |- ( `' F " y ) C_ ran `' F |
|
| 18 | dfdm4 | |- dom F = ran `' F |
|
| 19 | fdm | |- ( F : X --> Y -> dom F = X ) |
|
| 20 | 18 19 | eqtr3id | |- ( F : X --> Y -> ran `' F = X ) |
| 21 | 17 20 | sseqtrid | |- ( F : X --> Y -> ( `' F " y ) C_ X ) |
| 22 | 6 21 | syl | |- ( ph -> ( `' F " y ) C_ X ) |
| 23 | dfss2 | |- ( ( `' F " y ) C_ X <-> ( ( `' F " y ) i^i X ) = ( `' F " y ) ) |
|
| 24 | 22 23 | sylib | |- ( ph -> ( ( `' F " y ) i^i X ) = ( `' F " y ) ) |
| 25 | 9 16 24 | 3eqtr3rd | |- ( ph -> ( `' F " y ) = ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' F " y ) = ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) ) |
| 27 | cnclima | |- ( ( ( F |` A ) e. ( ( J |`t A ) Cn K ) /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` ( J |`t A ) ) ) |
|
| 28 | 7 27 | sylan | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` ( J |`t A ) ) ) |
| 29 | restcldr | |- ( ( A e. ( Clsd ` J ) /\ ( `' ( F |` A ) " y ) e. ( Clsd ` ( J |`t A ) ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` J ) ) |
|
| 30 | 3 28 29 | syl2an2r | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` A ) " y ) e. ( Clsd ` J ) ) |
| 31 | cnclima | |- ( ( ( F |` B ) e. ( ( J |`t B ) Cn K ) /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` ( J |`t B ) ) ) |
|
| 32 | 8 31 | sylan | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` ( J |`t B ) ) ) |
| 33 | restcldr | |- ( ( B e. ( Clsd ` J ) /\ ( `' ( F |` B ) " y ) e. ( Clsd ` ( J |`t B ) ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` J ) ) |
|
| 34 | 4 32 33 | syl2an2r | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' ( F |` B ) " y ) e. ( Clsd ` J ) ) |
| 35 | uncld | |- ( ( ( `' ( F |` A ) " y ) e. ( Clsd ` J ) /\ ( `' ( F |` B ) " y ) e. ( Clsd ` J ) ) -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) e. ( Clsd ` J ) ) |
|
| 36 | 30 34 35 | syl2anc | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( ( `' ( F |` A ) " y ) u. ( `' ( F |` B ) " y ) ) e. ( Clsd ` J ) ) |
| 37 | 26 36 | eqeltrd | |- ( ( ph /\ y e. ( Clsd ` K ) ) -> ( `' F " y ) e. ( Clsd ` J ) ) |
| 38 | 37 | ralrimiva | |- ( ph -> A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) |
| 39 | cldrcl | |- ( A e. ( Clsd ` J ) -> J e. Top ) |
|
| 40 | 3 39 | syl | |- ( ph -> J e. Top ) |
| 41 | cntop2 | |- ( ( F |` A ) e. ( ( J |`t A ) Cn K ) -> K e. Top ) |
|
| 42 | 7 41 | syl | |- ( ph -> K e. Top ) |
| 43 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 44 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 45 | iscncl | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) ) ) |
|
| 46 | 43 44 45 | syl2anb | |- ( ( J e. Top /\ K e. Top ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) ) ) |
| 47 | 40 42 46 | syl2anc | |- ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. y e. ( Clsd ` K ) ( `' F " y ) e. ( Clsd ` J ) ) ) ) |
| 48 | 6 38 47 | mpbir2and | |- ( ph -> F e. ( J Cn K ) ) |