This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed intervals are closed sets of the standard topology on RR . (Contributed by FL, 14-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icccld | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difreicc | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) = ( ( -oo (,) A ) u. ( B (,) +oo ) ) ) |
|
| 2 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 3 | iooretop | |- ( -oo (,) A ) e. ( topGen ` ran (,) ) |
|
| 4 | iooretop | |- ( B (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 5 | unopn | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,) A ) e. ( topGen ` ran (,) ) /\ ( B (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. ( topGen ` ran (,) ) ) |
|
| 6 | 2 3 4 5 | mp3an | |- ( ( -oo (,) A ) u. ( B (,) +oo ) ) e. ( topGen ` ran (,) ) |
| 7 | 1 6 | eqeltrdi | |- ( ( A e. RR /\ B e. RR ) -> ( RR \ ( A [,] B ) ) e. ( topGen ` ran (,) ) ) |
| 8 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 9 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 10 | 9 | iscld2 | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) <-> ( RR \ ( A [,] B ) ) e. ( topGen ` ran (,) ) ) ) |
| 11 | 2 8 10 | sylancr | |- ( ( A e. RR /\ B e. RR ) -> ( ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) <-> ( RR \ ( A [,] B ) ) e. ( topGen ` ran (,) ) ) ) |
| 12 | 7 11 | mpbird | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |