This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resmpo | |- ( ( C C_ A /\ D C_ B ) -> ( ( x e. A , y e. B |-> E ) |` ( C X. D ) ) = ( x e. C , y e. D |-> E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resoprab2 | |- ( ( C C_ A /\ D C_ B ) -> ( { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = E ) } |` ( C X. D ) ) = { <. <. x , y >. , z >. | ( ( x e. C /\ y e. D ) /\ z = E ) } ) |
|
| 2 | df-mpo | |- ( x e. A , y e. B |-> E ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = E ) } |
|
| 3 | 2 | reseq1i | |- ( ( x e. A , y e. B |-> E ) |` ( C X. D ) ) = ( { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = E ) } |` ( C X. D ) ) |
| 4 | df-mpo | |- ( x e. C , y e. D |-> E ) = { <. <. x , y >. , z >. | ( ( x e. C /\ y e. D ) /\ z = E ) } |
|
| 5 | 1 3 4 | 3eqtr4g | |- ( ( C C_ A /\ D C_ B ) -> ( ( x e. A , y e. B |-> E ) |` ( C X. D ) ) = ( x e. C , y e. D |-> E ) ) |