This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number either equals zero or contains zero. (Contributed by NM, 1-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | on0eqel | |- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss | |- (/) C_ A |
|
| 2 | 0elon | |- (/) e. On |
|
| 3 | onsseleq | |- ( ( (/) e. On /\ A e. On ) -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) |
|
| 4 | 2 3 | mpan | |- ( A e. On -> ( (/) C_ A <-> ( (/) e. A \/ (/) = A ) ) ) |
| 5 | 1 4 | mpbii | |- ( A e. On -> ( (/) e. A \/ (/) = A ) ) |
| 6 | eqcom | |- ( (/) = A <-> A = (/) ) |
|
| 7 | 6 | orbi2i | |- ( ( (/) e. A \/ (/) = A ) <-> ( (/) e. A \/ A = (/) ) ) |
| 8 | orcom | |- ( ( (/) e. A \/ A = (/) ) <-> ( A = (/) \/ (/) e. A ) ) |
|
| 9 | 7 8 | bitri | |- ( ( (/) e. A \/ (/) = A ) <-> ( A = (/) \/ (/) e. A ) ) |
| 10 | 5 9 | sylib | |- ( A e. On -> ( A = (/) \/ (/) e. A ) ) |