This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with an exponent of 1. Lemma 2.16 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe1 | |- ( A e. On -> ( A ^o 1o ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o | |- 1o = suc (/) |
|
| 2 | 1 | oveq2i | |- ( A ^o 1o ) = ( A ^o suc (/) ) |
| 3 | peano1 | |- (/) e. _om |
|
| 4 | onesuc | |- ( ( A e. On /\ (/) e. _om ) -> ( A ^o suc (/) ) = ( ( A ^o (/) ) .o A ) ) |
|
| 5 | 3 4 | mpan2 | |- ( A e. On -> ( A ^o suc (/) ) = ( ( A ^o (/) ) .o A ) ) |
| 6 | 2 5 | eqtrid | |- ( A e. On -> ( A ^o 1o ) = ( ( A ^o (/) ) .o A ) ) |
| 7 | oe0 | |- ( A e. On -> ( A ^o (/) ) = 1o ) |
|
| 8 | 7 | oveq1d | |- ( A e. On -> ( ( A ^o (/) ) .o A ) = ( 1o .o A ) ) |
| 9 | om1r | |- ( A e. On -> ( 1o .o A ) = A ) |
|
| 10 | 6 8 9 | 3eqtrd | |- ( A e. On -> ( A ^o 1o ) = A ) |