This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Simplify the isomorphism of cantnf to simple bijection. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnff1o.1 | |- S = dom ( A CNF B ) |
|
| cantnff1o.2 | |- ( ph -> A e. On ) |
||
| cantnff1o.3 | |- ( ph -> B e. On ) |
||
| Assertion | cantnff1o | |- ( ph -> ( A CNF B ) : S -1-1-onto-> ( A ^o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnff1o.1 | |- S = dom ( A CNF B ) |
|
| 2 | cantnff1o.2 | |- ( ph -> A e. On ) |
|
| 3 | cantnff1o.3 | |- ( ph -> B e. On ) |
|
| 4 | eqid | |- { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | 1 2 3 4 | cantnf | |- ( ph -> ( A CNF B ) Isom { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } , _E ( S , ( A ^o B ) ) ) |
| 6 | isof1o | |- ( ( A CNF B ) Isom { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } , _E ( S , ( A ^o B ) ) -> ( A CNF B ) : S -1-1-onto-> ( A ^o B ) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( A CNF B ) : S -1-1-onto-> ( A ^o B ) ) |