This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 29-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnflt2.f | |- ( ph -> F e. S ) |
||
| cantnflt2.a | |- ( ph -> (/) e. A ) |
||
| cantnflt2.c | |- ( ph -> C e. On ) |
||
| cantnflt2.s | |- ( ph -> ( F supp (/) ) C_ C ) |
||
| Assertion | cantnflt2 | |- ( ph -> ( ( A CNF B ) ` F ) e. ( A ^o C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnflt2.f | |- ( ph -> F e. S ) |
|
| 5 | cantnflt2.a | |- ( ph -> (/) e. A ) |
|
| 6 | cantnflt2.c | |- ( ph -> C e. On ) |
|
| 7 | cantnflt2.s | |- ( ph -> ( F supp (/) ) C_ C ) |
|
| 8 | eqid | |- OrdIso ( _E , ( F supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) |
|
| 9 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 10 | 1 2 3 8 4 9 | cantnfval | |- ( ph -> ( ( A CNF B ) ` F ) = ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( F supp (/) ) ) ) ) |
| 11 | ovexd | |- ( ph -> ( F supp (/) ) e. _V ) |
|
| 12 | 8 | oion | |- ( ( F supp (/) ) e. _V -> dom OrdIso ( _E , ( F supp (/) ) ) e. On ) |
| 13 | sucidg | |- ( dom OrdIso ( _E , ( F supp (/) ) ) e. On -> dom OrdIso ( _E , ( F supp (/) ) ) e. suc dom OrdIso ( _E , ( F supp (/) ) ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( ph -> dom OrdIso ( _E , ( F supp (/) ) ) e. suc dom OrdIso ( _E , ( F supp (/) ) ) ) |
| 15 | 1 2 3 8 4 | cantnfcl | |- ( ph -> ( _E We ( F supp (/) ) /\ dom OrdIso ( _E , ( F supp (/) ) ) e. _om ) ) |
| 16 | 15 | simpld | |- ( ph -> _E We ( F supp (/) ) ) |
| 17 | 8 | oiiso | |- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> OrdIso ( _E , ( F supp (/) ) ) Isom _E , _E ( dom OrdIso ( _E , ( F supp (/) ) ) , ( F supp (/) ) ) ) |
| 18 | 11 16 17 | syl2anc | |- ( ph -> OrdIso ( _E , ( F supp (/) ) ) Isom _E , _E ( dom OrdIso ( _E , ( F supp (/) ) ) , ( F supp (/) ) ) ) |
| 19 | isof1o | |- ( OrdIso ( _E , ( F supp (/) ) ) Isom _E , _E ( dom OrdIso ( _E , ( F supp (/) ) ) , ( F supp (/) ) ) -> OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -1-1-onto-> ( F supp (/) ) ) |
|
| 20 | f1ofo | |- ( OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -1-1-onto-> ( F supp (/) ) -> OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -onto-> ( F supp (/) ) ) |
|
| 21 | foima | |- ( OrdIso ( _E , ( F supp (/) ) ) : dom OrdIso ( _E , ( F supp (/) ) ) -onto-> ( F supp (/) ) -> ( OrdIso ( _E , ( F supp (/) ) ) " dom OrdIso ( _E , ( F supp (/) ) ) ) = ( F supp (/) ) ) |
|
| 22 | 18 19 20 21 | 4syl | |- ( ph -> ( OrdIso ( _E , ( F supp (/) ) ) " dom OrdIso ( _E , ( F supp (/) ) ) ) = ( F supp (/) ) ) |
| 23 | 22 7 | eqsstrd | |- ( ph -> ( OrdIso ( _E , ( F supp (/) ) ) " dom OrdIso ( _E , ( F supp (/) ) ) ) C_ C ) |
| 24 | 1 2 3 8 4 9 5 14 6 23 | cantnflt | |- ( ph -> ( seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) ` dom OrdIso ( _E , ( F supp (/) ) ) ) e. ( A ^o C ) ) |
| 25 | 10 24 | eqeltrd | |- ( ph -> ( ( A CNF B ) ` F ) e. ( A ^o C ) ) |