This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
||
| cantnfcl.f | |- ( ph -> F e. S ) |
||
| Assertion | cantnfcl | |- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfcl.g | |- G = OrdIso ( _E , ( F supp (/) ) ) |
|
| 5 | cantnfcl.f | |- ( ph -> F e. S ) |
|
| 6 | suppssdm | |- ( F supp (/) ) C_ dom F |
|
| 7 | 1 2 3 | cantnfs | |- ( ph -> ( F e. S <-> ( F : B --> A /\ F finSupp (/) ) ) ) |
| 8 | 5 7 | mpbid | |- ( ph -> ( F : B --> A /\ F finSupp (/) ) ) |
| 9 | 8 | simpld | |- ( ph -> F : B --> A ) |
| 10 | 6 9 | fssdm | |- ( ph -> ( F supp (/) ) C_ B ) |
| 11 | onss | |- ( B e. On -> B C_ On ) |
|
| 12 | 3 11 | syl | |- ( ph -> B C_ On ) |
| 13 | 10 12 | sstrd | |- ( ph -> ( F supp (/) ) C_ On ) |
| 14 | epweon | |- _E We On |
|
| 15 | wess | |- ( ( F supp (/) ) C_ On -> ( _E We On -> _E We ( F supp (/) ) ) ) |
|
| 16 | 13 14 15 | mpisyl | |- ( ph -> _E We ( F supp (/) ) ) |
| 17 | ovexd | |- ( ph -> ( F supp (/) ) e. _V ) |
|
| 18 | 4 | oion | |- ( ( F supp (/) ) e. _V -> dom G e. On ) |
| 19 | 17 18 | syl | |- ( ph -> dom G e. On ) |
| 20 | 8 | simprd | |- ( ph -> F finSupp (/) ) |
| 21 | 20 | fsuppimpd | |- ( ph -> ( F supp (/) ) e. Fin ) |
| 22 | 4 | oien | |- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> dom G ~~ ( F supp (/) ) ) |
| 23 | 17 16 22 | syl2anc | |- ( ph -> dom G ~~ ( F supp (/) ) ) |
| 24 | enfii | |- ( ( ( F supp (/) ) e. Fin /\ dom G ~~ ( F supp (/) ) ) -> dom G e. Fin ) |
|
| 25 | 21 23 24 | syl2anc | |- ( ph -> dom G e. Fin ) |
| 26 | 19 25 | elind | |- ( ph -> dom G e. ( On i^i Fin ) ) |
| 27 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 28 | 26 27 | eleqtrrdi | |- ( ph -> dom G e. _om ) |
| 29 | 16 28 | jca | |- ( ph -> ( _E We ( F supp (/) ) /\ dom G e. _om ) ) |