This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for clwwlkccat : index j is shifted up by ( #A ) , and the case i = ( ( #A ) - 1 ) is covered by the "bridge" { ( lastSA ) , ( B0 ) } = { ( lastSA ) , ( A0 ) } e. ( EdgG ) . (Contributed by AV, 23-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkccatlem | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> A e. Word ( Vtx ` G ) ) |
|
| 2 | simplr | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> B e. Word ( Vtx ` G ) ) |
|
| 3 | lencl | |- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. NN0 ) |
|
| 4 | 3 | nn0zd | |- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ZZ ) |
| 5 | fzossrbm1 | |- ( ( # ` A ) e. ZZ -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
|
| 6 | 4 5 | syl | |- ( A e. Word ( Vtx ` G ) -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 7 | 6 | ad2antrr | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( 0 ..^ ( ( # ` A ) - 1 ) ) C_ ( 0 ..^ ( # ` A ) ) ) |
| 8 | 7 | sselda | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> i e. ( 0 ..^ ( # ` A ) ) ) |
| 9 | ccatval1 | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ i e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` i ) = ( A ` i ) ) |
|
| 10 | 1 2 8 9 | syl3anc | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( A ++ B ) ` i ) = ( A ` i ) ) |
| 11 | 4 | ad2antrr | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` A ) e. ZZ ) |
| 12 | elfzom1elp1fzo | |- ( ( ( # ` A ) e. ZZ /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
|
| 13 | 11 12 | sylan | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 14 | ccatval1 | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( A ` ( i + 1 ) ) ) |
|
| 15 | 1 2 13 14 | syl3anc | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( A ` ( i + 1 ) ) ) |
| 16 | 10 15 | preq12d | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( A ` i ) , ( A ` ( i + 1 ) ) } ) |
| 17 | 16 | eleq1d | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 18 | 17 | biimprd | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) /\ i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) ) -> ( { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 19 | 18 | ralimdva | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ B e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 20 | 19 | impancom | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( B e. Word ( Vtx ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 21 | 20 | 3adant3 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( B e. Word ( Vtx ` G ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 22 | 21 | com12 | |- ( B e. Word ( Vtx ` G ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 23 | 22 | adantr | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 25 | 24 | impcom | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 26 | 25 | 3adant3 | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 27 | simprl | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> A e. Word ( Vtx ` G ) ) |
|
| 28 | simpll | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> B e. Word ( Vtx ` G ) ) |
|
| 29 | simprr | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> A =/= (/) ) |
|
| 30 | ccatval1lsw | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
|
| 31 | 27 28 29 30 | syl3anc | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
| 32 | 31 | adantr | |- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
| 33 | 3 | nn0cnd | |- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. CC ) |
| 34 | npcan1 | |- ( ( # ` A ) e. CC -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) |
|
| 35 | 33 34 | syl | |- ( A e. Word ( Vtx ` G ) -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) |
| 36 | 35 | ad2antrl | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( ( # ` A ) - 1 ) + 1 ) = ( # ` A ) ) |
| 37 | 36 | fveq2d | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( ( A ++ B ) ` ( # ` A ) ) ) |
| 38 | simplr | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> B =/= (/) ) |
|
| 39 | ccatval21sw | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |
|
| 40 | 27 28 38 39 | syl3anc | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |
| 41 | 37 40 | eqtrd | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( B ` 0 ) ) |
| 42 | 41 | adantr | |- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( B ` 0 ) ) |
| 43 | simpr | |- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ` 0 ) = ( B ` 0 ) ) |
|
| 44 | 42 43 | eqtr4d | |- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) = ( A ` 0 ) ) |
| 45 | 32 44 | preq12d | |- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } = { ( lastS ` A ) , ( A ` 0 ) } ) |
| 46 | 45 | eleq1d | |- ( ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) <-> { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) ) |
| 47 | 46 | exbiri | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 48 | 47 | com23 | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) ) -> ( { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 49 | 48 | expimpd | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 50 | 49 | 3ad2ant1 | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 51 | 50 | com12 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 52 | 51 | 3adant2 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 53 | 52 | 3imp | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
| 54 | ralunb | |- ( A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
|
| 55 | ovex | |- ( ( # ` A ) - 1 ) e. _V |
|
| 56 | fveq2 | |- ( i = ( ( # ` A ) - 1 ) -> ( ( A ++ B ) ` i ) = ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) ) |
|
| 57 | fvoveq1 | |- ( i = ( ( # ` A ) - 1 ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) ) |
|
| 58 | 56 57 | preq12d | |- ( i = ( ( # ` A ) - 1 ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } ) |
| 59 | 58 | eleq1d | |- ( i = ( ( # ` A ) - 1 ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 60 | 55 59 | ralsn | |- ( A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) |
| 61 | 60 | anbi2i | |- ( ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. { ( ( # ` A ) - 1 ) } { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 62 | 54 61 | bitri | |- ( A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) , ( ( A ++ B ) ` ( ( ( # ` A ) - 1 ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 63 | 26 53 62 | sylanbrc | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 64 | 0z | |- 0 e. ZZ |
|
| 65 | lennncl | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
|
| 66 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 67 | 66 | fveq2i | |- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 68 | 67 | eleq2i | |- ( ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) <-> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 69 | elnnuz | |- ( ( # ` A ) e. NN <-> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
|
| 70 | 68 69 | bitr4i | |- ( ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) <-> ( # ` A ) e. NN ) |
| 71 | 65 70 | sylibr | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 72 | fzosplitsnm1 | |- ( ( 0 e. ZZ /\ ( # ` A ) e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( 0 ..^ ( # ` A ) ) = ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) ) |
|
| 73 | 64 71 72 | sylancr | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( 0 ..^ ( # ` A ) ) = ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) ) |
| 74 | 73 | raleqdv | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 75 | 74 | 3ad2ant1 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 76 | 75 | 3ad2ant1 | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( ( 0 ..^ ( ( # ` A ) - 1 ) ) u. { ( ( # ` A ) - 1 ) } ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 77 | 63 76 | mpbird | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 78 | lencl | |- ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. NN0 ) |
|
| 79 | 78 | nn0zd | |- ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. ZZ ) |
| 80 | peano2zm | |- ( ( # ` B ) e. ZZ -> ( ( # ` B ) - 1 ) e. ZZ ) |
|
| 81 | 79 80 | syl | |- ( B e. Word ( Vtx ` G ) -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 82 | 81 | ad2antrl | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 83 | 82 | adantr | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` B ) - 1 ) e. ZZ ) |
| 84 | 83 | anim1ci | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) /\ ( ( # ` B ) - 1 ) e. ZZ ) ) |
| 85 | fzosubel3 | |- ( ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) /\ ( ( # ` B ) - 1 ) e. ZZ ) -> ( i - ( # ` A ) ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) ) |
|
| 86 | fveq2 | |- ( j = ( i - ( # ` A ) ) -> ( B ` j ) = ( B ` ( i - ( # ` A ) ) ) ) |
|
| 87 | fvoveq1 | |- ( j = ( i - ( # ` A ) ) -> ( B ` ( j + 1 ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) |
|
| 88 | 86 87 | preq12d | |- ( j = ( i - ( # ` A ) ) -> { ( B ` j ) , ( B ` ( j + 1 ) ) } = { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } ) |
| 89 | 88 | eleq1d | |- ( j = ( i - ( # ` A ) ) -> ( { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) <-> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 90 | 89 | rspcv | |- ( ( i - ( # ` A ) ) e. ( 0 ..^ ( ( # ` B ) - 1 ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 91 | 84 85 90 | 3syl | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 92 | simp-4l | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> A e. Word ( Vtx ` G ) ) |
|
| 93 | simprl | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> B e. Word ( Vtx ` G ) ) |
|
| 94 | 93 | ad2antrr | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> B e. Word ( Vtx ` G ) ) |
| 95 | 3 | adantr | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. NN0 ) |
| 96 | 78 | adantr | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. NN0 ) |
| 97 | nn0addcl | |- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. NN0 ) |
|
| 98 | 97 | nn0zd | |- ( ( ( # ` A ) e. NN0 /\ ( # ` B ) e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 99 | 95 96 98 | syl2an | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 100 | 1nn0 | |- 1 e. NN0 |
|
| 101 | eluzmn | |- ( ( ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ 1 e. NN0 ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
|
| 102 | 99 100 101 | sylancl | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 103 | 33 | ad2antrr | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( # ` A ) e. CC ) |
| 104 | 78 | nn0cnd | |- ( B e. Word ( Vtx ` G ) -> ( # ` B ) e. CC ) |
| 105 | 104 | ad2antrl | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( # ` B ) e. CC ) |
| 106 | 1cnd | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> 1 e. CC ) |
|
| 107 | 103 105 106 | addsubassd | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( ( # ` A ) + ( # ` B ) ) - 1 ) = ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) |
| 108 | 107 | fveq2d | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ZZ>= ` ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) = ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 109 | 102 108 | eleqtrd | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 110 | fzoss2 | |- ( ( ( # ` A ) + ( # ` B ) ) e. ( ZZ>= ` ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
|
| 111 | 109 110 | syl | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 112 | 111 | adantr | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) C_ ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 113 | 112 | sselda | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 114 | ccatval2 | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` i ) = ( B ` ( i - ( # ` A ) ) ) ) |
|
| 115 | 92 94 113 114 | syl3anc | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` i ) = ( B ` ( i - ( # ` A ) ) ) ) |
| 116 | 107 | oveq2d | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) = ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 117 | 116 | eleq2d | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 118 | 117 | adantr | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 119 | eluzmn | |- ( ( ( # ` A ) e. ZZ /\ 1 e. NN0 ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) |
|
| 120 | 4 100 119 | sylancl | |- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) |
| 121 | 120 | ad3antrrr | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) ) |
| 122 | fzoss1 | |- ( ( # ` A ) e. ( ZZ>= ` ( ( # ` A ) - 1 ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) C_ ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
|
| 123 | 121 122 | syl | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) C_ ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 124 | 123 | sseld | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) ) |
| 125 | 118 124 | sylbird | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) ) |
| 126 | 125 | imp | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) ) |
| 127 | 4 | adantr | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ZZ ) |
| 128 | 79 | adantr | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. ZZ ) |
| 129 | simpl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( # ` A ) e. ZZ ) |
|
| 130 | zaddcl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
|
| 131 | 129 130 | jca | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) |
| 132 | 127 128 131 | syl2an | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) |
| 133 | 132 | adantr | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) ) |
| 134 | elfzoelz | |- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. ZZ ) |
|
| 135 | 1zzd | |- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> 1 e. ZZ ) |
|
| 136 | 134 135 | jca | |- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> ( i e. ZZ /\ 1 e. ZZ ) ) |
| 137 | elfzomelpfzo | |- ( ( ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ ) /\ ( i e. ZZ /\ 1 e. ZZ ) ) -> ( i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
|
| 138 | 133 136 137 | syl2an | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i e. ( ( ( # ` A ) - 1 ) ..^ ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) <-> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) ) |
| 139 | 126 138 | mpbid | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 140 | ccatval2 | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ ( i + 1 ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i + 1 ) - ( # ` A ) ) ) ) |
|
| 141 | 92 94 139 140 | syl3anc | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i + 1 ) - ( # ` A ) ) ) ) |
| 142 | 134 | zcnd | |- ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> i e. CC ) |
| 143 | 142 | adantl | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> i e. CC ) |
| 144 | 1cnd | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> 1 e. CC ) |
|
| 145 | 103 | ad2antrr | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( # ` A ) e. CC ) |
| 146 | 143 144 145 | addsubd | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( i + 1 ) - ( # ` A ) ) = ( ( i - ( # ` A ) ) + 1 ) ) |
| 147 | 146 | fveq2d | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( B ` ( ( i + 1 ) - ( # ` A ) ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) |
| 148 | 141 147 | eqtrd | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( ( A ++ B ) ` ( i + 1 ) ) = ( B ` ( ( i - ( # ` A ) ) + 1 ) ) ) |
| 149 | 115 148 | preq12d | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } = { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } ) |
| 150 | 149 | eleq1d | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( B ` ( i - ( # ` A ) ) ) , ( B ` ( ( i - ( # ` A ) ) + 1 ) ) } e. ( Edg ` G ) ) ) |
| 151 | 91 150 | sylibrd | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 152 | 151 | impancom | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> ( i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) -> { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 153 | 152 | ralrimiv | |- ( ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 154 | 153 | exp31 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 155 | 154 | expcom | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 156 | 155 | com23 | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 157 | 156 | com24 | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 158 | 157 | imp | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 159 | 158 | 3adant3 | |- ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 160 | 159 | com12 | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 161 | 160 | 3ad2ant1 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) -> ( ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) -> ( ( A ` 0 ) = ( B ` 0 ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 162 | 161 | 3imp | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 163 | ralunb | |- ( A. i e. ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> ( A. i e. ( 0 ..^ ( # ` A ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ A. i e. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
|
| 164 | 77 162 163 | sylanbrc | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 165 | ccatlen | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 166 | 165 | oveq1d | |- ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) |
| 167 | 166 | ad2ant2r | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( ( # ` A ) + ( # ` B ) ) - 1 ) ) |
| 168 | 167 107 | eqtrd | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( ( # ` ( A ++ B ) ) - 1 ) = ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) |
| 169 | 168 | oveq2d | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) |
| 170 | elnn0uz | |- ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
|
| 171 | 3 170 | sylib | |- ( A e. Word ( Vtx ` G ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
| 172 | 171 | adantr | |- ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
| 173 | lennncl | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( # ` B ) e. NN ) |
|
| 174 | nnm1nn0 | |- ( ( # ` B ) e. NN -> ( ( # ` B ) - 1 ) e. NN0 ) |
|
| 175 | 173 174 | syl | |- ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) -> ( ( # ` B ) - 1 ) e. NN0 ) |
| 176 | fzoun | |- ( ( ( # ` A ) e. ( ZZ>= ` 0 ) /\ ( ( # ` B ) - 1 ) e. NN0 ) -> ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
|
| 177 | 172 175 176 | syl2an | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 178 | 169 177 | eqtrd | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 179 | 178 | 3ad2antr1 | |- ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 180 | 179 | 3ad2antl1 | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 181 | 180 | 3adant3 | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. ( ( # ` A ) ..^ ( ( # ` A ) + ( ( # ` B ) - 1 ) ) ) ) ) |
| 182 | 164 181 | raleqtrrdv | |- ( ( ( ( A e. Word ( Vtx ` G ) /\ A =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` A ) - 1 ) ) { ( A ` i ) , ( A ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` A ) , ( A ` 0 ) } e. ( Edg ` G ) ) /\ ( ( B e. Word ( Vtx ` G ) /\ B =/= (/) ) /\ A. j e. ( 0 ..^ ( ( # ` B ) - 1 ) ) { ( B ` j ) , ( B ` ( j + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` B ) , ( B ` 0 ) } e. ( Edg ` G ) ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` ( A ++ B ) ) - 1 ) ) { ( ( A ++ B ) ` i ) , ( ( A ++ B ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |