This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Proof shortened by AV, 5-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzom1elp1fzo | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( I + 1 ) e. ( 0 ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzofz | |- ( I e. ( 0 ..^ ( N - 1 ) ) -> I e. ( 0 ... ( N - 1 ) ) ) |
|
| 2 | elfzuz2 | |- ( I e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
|
| 3 | elnn0uz | |- ( ( N - 1 ) e. NN0 <-> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
|
| 4 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 5 | 4 | anim1i | |- ( ( N e. ZZ /\ ( N - 1 ) e. NN0 ) -> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) |
| 6 | elnnnn0 | |- ( N e. NN <-> ( N e. CC /\ ( N - 1 ) e. NN0 ) ) |
|
| 7 | 5 6 | sylibr | |- ( ( N e. ZZ /\ ( N - 1 ) e. NN0 ) -> N e. NN ) |
| 8 | 7 | expcom | |- ( ( N - 1 ) e. NN0 -> ( N e. ZZ -> N e. NN ) ) |
| 9 | 3 8 | sylbir | |- ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( N e. ZZ -> N e. NN ) ) |
| 10 | 1 2 9 | 3syl | |- ( I e. ( 0 ..^ ( N - 1 ) ) -> ( N e. ZZ -> N e. NN ) ) |
| 11 | 10 | impcom | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> N e. NN ) |
| 12 | 1nn0 | |- 1 e. NN0 |
|
| 13 | 12 | a1i | |- ( N e. NN -> 1 e. NN0 ) |
| 14 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 15 | nnge1 | |- ( N e. NN -> 1 <_ N ) |
|
| 16 | 13 14 15 | 3jca | |- ( N e. NN -> ( 1 e. NN0 /\ N e. NN0 /\ 1 <_ N ) ) |
| 17 | 11 16 | syl | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( 1 e. NN0 /\ N e. NN0 /\ 1 <_ N ) ) |
| 18 | elfz2nn0 | |- ( 1 e. ( 0 ... N ) <-> ( 1 e. NN0 /\ N e. NN0 /\ 1 <_ N ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> 1 e. ( 0 ... N ) ) |
| 20 | fzossrbm1 | |- ( N e. ZZ -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
|
| 21 | 20 | adantr | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 22 | fzossfz | |- ( 0 ..^ N ) C_ ( 0 ... N ) |
|
| 23 | 21 22 | sstrdi | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 24 | simpr | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> I e. ( 0 ..^ ( N - 1 ) ) ) |
|
| 25 | 23 24 | jca | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( 0 ..^ ( N - 1 ) ) C_ ( 0 ... N ) /\ I e. ( 0 ..^ ( N - 1 ) ) ) ) |
| 26 | ssel2 | |- ( ( ( 0 ..^ ( N - 1 ) ) C_ ( 0 ... N ) /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> I e. ( 0 ... N ) ) |
|
| 27 | elfzubelfz | |- ( I e. ( 0 ... N ) -> N e. ( 0 ... N ) ) |
|
| 28 | 25 26 27 | 3syl | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> N e. ( 0 ... N ) ) |
| 29 | 19 28 | jca | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( 1 e. ( 0 ... N ) /\ N e. ( 0 ... N ) ) ) |
| 30 | elfzodifsumelfzo | |- ( ( 1 e. ( 0 ... N ) /\ N e. ( 0 ... N ) ) -> ( I e. ( 0 ..^ ( N - 1 ) ) -> ( I + 1 ) e. ( 0 ..^ N ) ) ) |
|
| 31 | 29 24 30 | sylc | |- ( ( N e. ZZ /\ I e. ( 0 ..^ ( N - 1 ) ) ) -> ( I + 1 ) e. ( 0 ..^ N ) ) |