This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzomelpfzo | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( K e. ( ( M - L ) ..^ ( N - L ) ) <-> ( K + L ) e. ( M ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl | |- ( ( M e. ZZ /\ L e. ZZ ) -> ( M - L ) e. ZZ ) |
|
| 2 | 1 | ad2ant2rl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( M - L ) e. ZZ ) |
| 3 | simpl | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> M e. ZZ ) |
| 5 | 2 4 | 2thd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( M - L ) e. ZZ <-> M e. ZZ ) ) |
| 6 | simpl | |- ( ( K e. ZZ /\ L e. ZZ ) -> K e. ZZ ) |
|
| 7 | 6 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> K e. ZZ ) |
| 8 | zaddcl | |- ( ( K e. ZZ /\ L e. ZZ ) -> ( K + L ) e. ZZ ) |
|
| 9 | 8 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( K + L ) e. ZZ ) |
| 10 | 7 9 | 2thd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( K e. ZZ <-> ( K + L ) e. ZZ ) ) |
| 11 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 12 | 11 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. RR ) |
| 13 | 12 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> M e. RR ) |
| 14 | zre | |- ( L e. ZZ -> L e. RR ) |
|
| 15 | 14 | adantl | |- ( ( K e. ZZ /\ L e. ZZ ) -> L e. RR ) |
| 16 | 15 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> L e. RR ) |
| 17 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 18 | 17 | adantr | |- ( ( K e. ZZ /\ L e. ZZ ) -> K e. RR ) |
| 19 | 18 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> K e. RR ) |
| 20 | 13 16 19 | lesubaddd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( M - L ) <_ K <-> M <_ ( K + L ) ) ) |
| 21 | 5 10 20 | 3anbi123d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( ( M - L ) e. ZZ /\ K e. ZZ /\ ( M - L ) <_ K ) <-> ( M e. ZZ /\ ( K + L ) e. ZZ /\ M <_ ( K + L ) ) ) ) |
| 22 | eluz2 | |- ( K e. ( ZZ>= ` ( M - L ) ) <-> ( ( M - L ) e. ZZ /\ K e. ZZ /\ ( M - L ) <_ K ) ) |
|
| 23 | eluz2 | |- ( ( K + L ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( K + L ) e. ZZ /\ M <_ ( K + L ) ) ) |
|
| 24 | 21 22 23 | 3bitr4g | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( K e. ( ZZ>= ` ( M - L ) ) <-> ( K + L ) e. ( ZZ>= ` M ) ) ) |
| 25 | zsubcl | |- ( ( N e. ZZ /\ L e. ZZ ) -> ( N - L ) e. ZZ ) |
|
| 26 | 25 | ad2ant2l | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( N - L ) e. ZZ ) |
| 27 | simplr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> N e. ZZ ) |
|
| 28 | 26 27 | 2thd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( N - L ) e. ZZ <-> N e. ZZ ) ) |
| 29 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 30 | 29 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. RR ) |
| 31 | 30 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> N e. RR ) |
| 32 | 19 16 31 | ltaddsubd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( K + L ) < N <-> K < ( N - L ) ) ) |
| 33 | 32 | bicomd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( K < ( N - L ) <-> ( K + L ) < N ) ) |
| 34 | 24 28 33 | 3anbi123d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( ( K e. ( ZZ>= ` ( M - L ) ) /\ ( N - L ) e. ZZ /\ K < ( N - L ) ) <-> ( ( K + L ) e. ( ZZ>= ` M ) /\ N e. ZZ /\ ( K + L ) < N ) ) ) |
| 35 | elfzo2 | |- ( K e. ( ( M - L ) ..^ ( N - L ) ) <-> ( K e. ( ZZ>= ` ( M - L ) ) /\ ( N - L ) e. ZZ /\ K < ( N - L ) ) ) |
|
| 36 | elfzo2 | |- ( ( K + L ) e. ( M ..^ N ) <-> ( ( K + L ) e. ( ZZ>= ` M ) /\ N e. ZZ /\ ( K + L ) < N ) ) |
|
| 37 | 34 35 36 | 3bitr4g | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ L e. ZZ ) ) -> ( K e. ( ( M - L ) ..^ ( N - L ) ) <-> ( K + L ) e. ( M ..^ N ) ) ) |