This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitsnm1 | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( A ..^ B ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | |- ( B e. ( ZZ>= ` ( A + 1 ) ) -> B e. ZZ ) |
|
| 2 | 1 | zcnd | |- ( B e. ( ZZ>= ` ( A + 1 ) ) -> B e. CC ) |
| 3 | 2 | adantl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> B e. CC ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | npcan | |- ( ( B e. CC /\ 1 e. CC ) -> ( ( B - 1 ) + 1 ) = B ) |
|
| 6 | 5 | eqcomd | |- ( ( B e. CC /\ 1 e. CC ) -> B = ( ( B - 1 ) + 1 ) ) |
| 7 | 3 4 6 | sylancl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> B = ( ( B - 1 ) + 1 ) ) |
| 8 | 7 | oveq2d | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( A ..^ B ) = ( A ..^ ( ( B - 1 ) + 1 ) ) ) |
| 9 | eluzp1m1 | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( B - 1 ) e. ( ZZ>= ` A ) ) |
|
| 10 | 1 | adantl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> B e. ZZ ) |
| 11 | peano2zm | |- ( B e. ZZ -> ( B - 1 ) e. ZZ ) |
|
| 12 | uzid | |- ( ( B - 1 ) e. ZZ -> ( B - 1 ) e. ( ZZ>= ` ( B - 1 ) ) ) |
|
| 13 | peano2uz | |- ( ( B - 1 ) e. ( ZZ>= ` ( B - 1 ) ) -> ( ( B - 1 ) + 1 ) e. ( ZZ>= ` ( B - 1 ) ) ) |
|
| 14 | 10 11 12 13 | 4syl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( ( B - 1 ) + 1 ) e. ( ZZ>= ` ( B - 1 ) ) ) |
| 15 | elfzuzb | |- ( ( B - 1 ) e. ( A ... ( ( B - 1 ) + 1 ) ) <-> ( ( B - 1 ) e. ( ZZ>= ` A ) /\ ( ( B - 1 ) + 1 ) e. ( ZZ>= ` ( B - 1 ) ) ) ) |
|
| 16 | 9 14 15 | sylanbrc | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( B - 1 ) e. ( A ... ( ( B - 1 ) + 1 ) ) ) |
| 17 | fzosplit | |- ( ( B - 1 ) e. ( A ... ( ( B - 1 ) + 1 ) ) -> ( A ..^ ( ( B - 1 ) + 1 ) ) = ( ( A ..^ ( B - 1 ) ) u. ( ( B - 1 ) ..^ ( ( B - 1 ) + 1 ) ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( A ..^ ( ( B - 1 ) + 1 ) ) = ( ( A ..^ ( B - 1 ) ) u. ( ( B - 1 ) ..^ ( ( B - 1 ) + 1 ) ) ) ) |
| 19 | 1 11 | syl | |- ( B e. ( ZZ>= ` ( A + 1 ) ) -> ( B - 1 ) e. ZZ ) |
| 20 | 19 | adantl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( B - 1 ) e. ZZ ) |
| 21 | fzosn | |- ( ( B - 1 ) e. ZZ -> ( ( B - 1 ) ..^ ( ( B - 1 ) + 1 ) ) = { ( B - 1 ) } ) |
|
| 22 | 20 21 | syl | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( ( B - 1 ) ..^ ( ( B - 1 ) + 1 ) ) = { ( B - 1 ) } ) |
| 23 | 22 | uneq2d | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( ( A ..^ ( B - 1 ) ) u. ( ( B - 1 ) ..^ ( ( B - 1 ) + 1 ) ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |
| 24 | 8 18 23 | 3eqtrd | |- ( ( A e. ZZ /\ B e. ( ZZ>= ` ( A + 1 ) ) ) -> ( A ..^ B ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) } ) ) |