This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval1lsw | |- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lennncl | |- ( ( A e. Word V /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
|
| 2 | 1 | 3adant2 | |- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( # ` A ) e. NN ) |
| 3 | fzo0end | |- ( ( # ` A ) e. NN -> ( ( # ` A ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( # ` A ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) |
| 5 | ccatval1 | |- ( ( A e. Word V /\ B e. Word V /\ ( ( # ` A ) - 1 ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
|
| 6 | 4 5 | syld3an3 | |- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 7 | lsw | |- ( A e. Word V -> ( lastS ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( lastS ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) |
| 9 | 6 8 | eqtr4d | |- ( ( A e. Word V /\ B e. Word V /\ A =/= (/) ) -> ( ( A ++ B ) ` ( ( # ` A ) - 1 ) ) = ( lastS ` A ) ) |