This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval21sw | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( A e. Word V -> ( # ` A ) e. NN0 ) |
|
| 2 | 1 | nn0zd | |- ( A e. Word V -> ( # ` A ) e. ZZ ) |
| 3 | lennncl | |- ( ( B e. Word V /\ B =/= (/) ) -> ( # ` B ) e. NN ) |
|
| 4 | simpl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) e. ZZ ) |
|
| 5 | nnz | |- ( ( # ` B ) e. NN -> ( # ` B ) e. ZZ ) |
|
| 6 | zaddcl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
|
| 7 | 5 6 | sylan2 | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) + ( # ` B ) ) e. ZZ ) |
| 8 | nngt0 | |- ( ( # ` B ) e. NN -> 0 < ( # ` B ) ) |
|
| 9 | 8 | adantl | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> 0 < ( # ` B ) ) |
| 10 | nnre | |- ( ( # ` B ) e. NN -> ( # ` B ) e. RR ) |
|
| 11 | zre | |- ( ( # ` A ) e. ZZ -> ( # ` A ) e. RR ) |
|
| 12 | ltaddpos | |- ( ( ( # ` B ) e. RR /\ ( # ` A ) e. RR ) -> ( 0 < ( # ` B ) <-> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
|
| 13 | 10 11 12 | syl2anr | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( 0 < ( # ` B ) <-> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 14 | 9 13 | mpbid | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) |
| 15 | 4 7 14 | 3jca | |- ( ( ( # ` A ) e. ZZ /\ ( # ` B ) e. NN ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 16 | 2 3 15 | syl2an | |- ( ( A e. Word V /\ ( B e. Word V /\ B =/= (/) ) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 17 | 16 | 3impb | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
| 18 | fzolb | |- ( ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) <-> ( ( # ` A ) e. ZZ /\ ( ( # ` A ) + ( # ` B ) ) e. ZZ /\ ( # ` A ) < ( ( # ` A ) + ( # ` B ) ) ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) |
| 20 | ccatval2 | |- ( ( A e. Word V /\ B e. Word V /\ ( # ` A ) e. ( ( # ` A ) ..^ ( ( # ` A ) + ( # ` B ) ) ) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` ( ( # ` A ) - ( # ` A ) ) ) ) |
|
| 21 | 19 20 | syld3an3 | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` ( ( # ` A ) - ( # ` A ) ) ) ) |
| 22 | 1 | nn0cnd | |- ( A e. Word V -> ( # ` A ) e. CC ) |
| 23 | 22 | subidd | |- ( A e. Word V -> ( ( # ` A ) - ( # ` A ) ) = 0 ) |
| 24 | 23 | fveq2d | |- ( A e. Word V -> ( B ` ( ( # ` A ) - ( # ` A ) ) ) = ( B ` 0 ) ) |
| 25 | 24 | 3ad2ant1 | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( B ` ( ( # ` A ) - ( # ` A ) ) ) = ( B ` 0 ) ) |
| 26 | 21 25 | eqtrd | |- ( ( A e. Word V /\ B e. Word V /\ B =/= (/) ) -> ( ( A ++ B ) ` ( # ` A ) ) = ( B ` 0 ) ) |