This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range as union of two half-open integer ranges. (Contributed by AV, 23-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoun | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> ( A ..^ ( B + C ) ) = ( ( A ..^ B ) u. ( B ..^ ( B + C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( B e. ( ZZ>= ` A ) -> A e. ZZ ) |
|
| 2 | 1 | adantr | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> A e. ZZ ) |
| 3 | eluzelz | |- ( B e. ( ZZ>= ` A ) -> B e. ZZ ) |
|
| 4 | nn0z | |- ( C e. NN0 -> C e. ZZ ) |
|
| 5 | zaddcl | |- ( ( B e. ZZ /\ C e. ZZ ) -> ( B + C ) e. ZZ ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> ( B + C ) e. ZZ ) |
| 7 | 3 | adantr | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> B e. ZZ ) |
| 8 | eluzle | |- ( B e. ( ZZ>= ` A ) -> A <_ B ) |
|
| 9 | 8 | adantr | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> A <_ B ) |
| 10 | nn0ge0 | |- ( C e. NN0 -> 0 <_ C ) |
|
| 11 | 10 | adantl | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> 0 <_ C ) |
| 12 | eluzelre | |- ( B e. ( ZZ>= ` A ) -> B e. RR ) |
|
| 13 | nn0re | |- ( C e. NN0 -> C e. RR ) |
|
| 14 | addge01 | |- ( ( B e. RR /\ C e. RR ) -> ( 0 <_ C <-> B <_ ( B + C ) ) ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> ( 0 <_ C <-> B <_ ( B + C ) ) ) |
| 16 | 11 15 | mpbid | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> B <_ ( B + C ) ) |
| 17 | 2 6 7 9 16 | elfzd | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> B e. ( A ... ( B + C ) ) ) |
| 18 | fzosplit | |- ( B e. ( A ... ( B + C ) ) -> ( A ..^ ( B + C ) ) = ( ( A ..^ B ) u. ( B ..^ ( B + C ) ) ) ) |
|
| 19 | 17 18 | syl | |- ( ( B e. ( ZZ>= ` A ) /\ C e. NN0 ) -> ( A ..^ ( B + C ) ) = ( ( A ..^ B ) u. ( B ..^ ( B + C ) ) ) ) |