This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than C has a normal form, we can use oeeu to factor C into the form ( ( A ^o X ) .o Y ) +o Z where 0 < Y < A and Z < ( A ^o X ) (and a fortiori X < B ). Then since Z < ( A ^o X ) <_ ( A ^o X ) .o Y <_ C , Z has a normal form, and by appending the term ( A ^o X ) .o Y using cantnfp1 we get a normal form for C . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| cantnf.c | |- ( ph -> C e. ( A ^o B ) ) |
||
| cantnf.s | |- ( ph -> C C_ ran ( A CNF B ) ) |
||
| cantnf.e | |- ( ph -> (/) e. C ) |
||
| cantnf.x | |- X = U. |^| { c e. On | C e. ( A ^o c ) } |
||
| cantnf.p | |- P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) |
||
| cantnf.y | |- Y = ( 1st ` P ) |
||
| cantnf.z | |- Z = ( 2nd ` P ) |
||
| cantnf.g | |- ( ph -> G e. S ) |
||
| cantnf.v | |- ( ph -> ( ( A CNF B ) ` G ) = Z ) |
||
| cantnf.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
||
| Assertion | cantnflem3 | |- ( ph -> C e. ran ( A CNF B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | cantnf.c | |- ( ph -> C e. ( A ^o B ) ) |
|
| 6 | cantnf.s | |- ( ph -> C C_ ran ( A CNF B ) ) |
|
| 7 | cantnf.e | |- ( ph -> (/) e. C ) |
|
| 8 | cantnf.x | |- X = U. |^| { c e. On | C e. ( A ^o c ) } |
|
| 9 | cantnf.p | |- P = ( iota d E. a e. On E. b e. ( A ^o X ) ( d = <. a , b >. /\ ( ( ( A ^o X ) .o a ) +o b ) = C ) ) |
|
| 10 | cantnf.y | |- Y = ( 1st ` P ) |
|
| 11 | cantnf.z | |- Z = ( 2nd ` P ) |
|
| 12 | cantnf.g | |- ( ph -> G e. S ) |
|
| 13 | cantnf.v | |- ( ph -> ( ( A CNF B ) ` G ) = Z ) |
|
| 14 | cantnf.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
|
| 15 | 1 2 3 4 5 6 7 | cantnflem2 | |- ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) |
| 16 | eqid | |- X = X |
|
| 17 | eqid | |- Y = Y |
|
| 18 | eqid | |- Z = Z |
|
| 19 | 16 17 18 | 3pm3.2i | |- ( X = X /\ Y = Y /\ Z = Z ) |
| 20 | 8 9 10 11 | oeeui | |- ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) <-> ( X = X /\ Y = Y /\ Z = Z ) ) ) |
| 21 | 19 20 | mpbiri | |- ( ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) |
| 22 | 15 21 | syl | |- ( ph -> ( ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) /\ ( ( ( A ^o X ) .o Y ) +o Z ) = C ) ) |
| 23 | 22 | simpld | |- ( ph -> ( X e. On /\ Y e. ( A \ 1o ) /\ Z e. ( A ^o X ) ) ) |
| 24 | 23 | simp1d | |- ( ph -> X e. On ) |
| 25 | oecl | |- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
|
| 26 | 2 24 25 | syl2anc | |- ( ph -> ( A ^o X ) e. On ) |
| 27 | 23 | simp2d | |- ( ph -> Y e. ( A \ 1o ) ) |
| 28 | 27 | eldifad | |- ( ph -> Y e. A ) |
| 29 | onelon | |- ( ( A e. On /\ Y e. A ) -> Y e. On ) |
|
| 30 | 2 28 29 | syl2anc | |- ( ph -> Y e. On ) |
| 31 | dif1o | |- ( Y e. ( A \ 1o ) <-> ( Y e. A /\ Y =/= (/) ) ) |
|
| 32 | 31 | simprbi | |- ( Y e. ( A \ 1o ) -> Y =/= (/) ) |
| 33 | 27 32 | syl | |- ( ph -> Y =/= (/) ) |
| 34 | on0eln0 | |- ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) |
|
| 35 | 30 34 | syl | |- ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) |
| 36 | 33 35 | mpbird | |- ( ph -> (/) e. Y ) |
| 37 | omword1 | |- ( ( ( ( A ^o X ) e. On /\ Y e. On ) /\ (/) e. Y ) -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) |
|
| 38 | 26 30 36 37 | syl21anc | |- ( ph -> ( A ^o X ) C_ ( ( A ^o X ) .o Y ) ) |
| 39 | omcl | |- ( ( ( A ^o X ) e. On /\ Y e. On ) -> ( ( A ^o X ) .o Y ) e. On ) |
|
| 40 | 26 30 39 | syl2anc | |- ( ph -> ( ( A ^o X ) .o Y ) e. On ) |
| 41 | 23 | simp3d | |- ( ph -> Z e. ( A ^o X ) ) |
| 42 | onelon | |- ( ( ( A ^o X ) e. On /\ Z e. ( A ^o X ) ) -> Z e. On ) |
|
| 43 | 26 41 42 | syl2anc | |- ( ph -> Z e. On ) |
| 44 | oaword1 | |- ( ( ( ( A ^o X ) .o Y ) e. On /\ Z e. On ) -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) |
|
| 45 | 40 43 44 | syl2anc | |- ( ph -> ( ( A ^o X ) .o Y ) C_ ( ( ( A ^o X ) .o Y ) +o Z ) ) |
| 46 | 22 | simprd | |- ( ph -> ( ( ( A ^o X ) .o Y ) +o Z ) = C ) |
| 47 | 45 46 | sseqtrd | |- ( ph -> ( ( A ^o X ) .o Y ) C_ C ) |
| 48 | 38 47 | sstrd | |- ( ph -> ( A ^o X ) C_ C ) |
| 49 | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
|
| 50 | 2 3 49 | syl2anc | |- ( ph -> ( A ^o B ) e. On ) |
| 51 | ontr2 | |- ( ( ( A ^o X ) e. On /\ ( A ^o B ) e. On ) -> ( ( ( A ^o X ) C_ C /\ C e. ( A ^o B ) ) -> ( A ^o X ) e. ( A ^o B ) ) ) |
|
| 52 | 26 50 51 | syl2anc | |- ( ph -> ( ( ( A ^o X ) C_ C /\ C e. ( A ^o B ) ) -> ( A ^o X ) e. ( A ^o B ) ) ) |
| 53 | 48 5 52 | mp2and | |- ( ph -> ( A ^o X ) e. ( A ^o B ) ) |
| 54 | 15 | simpld | |- ( ph -> A e. ( On \ 2o ) ) |
| 55 | oeord | |- ( ( X e. On /\ B e. On /\ A e. ( On \ 2o ) ) -> ( X e. B <-> ( A ^o X ) e. ( A ^o B ) ) ) |
|
| 56 | 24 3 54 55 | syl3anc | |- ( ph -> ( X e. B <-> ( A ^o X ) e. ( A ^o B ) ) ) |
| 57 | 53 56 | mpbird | |- ( ph -> X e. B ) |
| 58 | 2 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> A e. On ) |
| 59 | 3 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> B e. On ) |
| 60 | suppssdm | |- ( G supp (/) ) C_ dom G |
|
| 61 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 62 | 12 61 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 63 | 62 | simpld | |- ( ph -> G : B --> A ) |
| 64 | 60 63 | fssdm | |- ( ph -> ( G supp (/) ) C_ B ) |
| 65 | 64 | sselda | |- ( ( ph /\ x e. ( G supp (/) ) ) -> x e. B ) |
| 66 | onelon | |- ( ( B e. On /\ x e. B ) -> x e. On ) |
|
| 67 | 59 65 66 | syl2anc | |- ( ( ph /\ x e. ( G supp (/) ) ) -> x e. On ) |
| 68 | oecl | |- ( ( A e. On /\ x e. On ) -> ( A ^o x ) e. On ) |
|
| 69 | 58 67 68 | syl2anc | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) e. On ) |
| 70 | 63 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> G : B --> A ) |
| 71 | 70 65 | ffvelcdmd | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( G ` x ) e. A ) |
| 72 | onelon | |- ( ( A e. On /\ ( G ` x ) e. A ) -> ( G ` x ) e. On ) |
|
| 73 | 58 71 72 | syl2anc | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( G ` x ) e. On ) |
| 74 | 63 | ffnd | |- ( ph -> G Fn B ) |
| 75 | 7 | elexd | |- ( ph -> (/) e. _V ) |
| 76 | elsuppfn | |- ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( x e. ( G supp (/) ) <-> ( x e. B /\ ( G ` x ) =/= (/) ) ) ) |
|
| 77 | 74 3 75 76 | syl3anc | |- ( ph -> ( x e. ( G supp (/) ) <-> ( x e. B /\ ( G ` x ) =/= (/) ) ) ) |
| 78 | 77 | simplbda | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( G ` x ) =/= (/) ) |
| 79 | on0eln0 | |- ( ( G ` x ) e. On -> ( (/) e. ( G ` x ) <-> ( G ` x ) =/= (/) ) ) |
|
| 80 | 73 79 | syl | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( (/) e. ( G ` x ) <-> ( G ` x ) =/= (/) ) ) |
| 81 | 78 80 | mpbird | |- ( ( ph /\ x e. ( G supp (/) ) ) -> (/) e. ( G ` x ) ) |
| 82 | omword1 | |- ( ( ( ( A ^o x ) e. On /\ ( G ` x ) e. On ) /\ (/) e. ( G ` x ) ) -> ( A ^o x ) C_ ( ( A ^o x ) .o ( G ` x ) ) ) |
|
| 83 | 69 73 81 82 | syl21anc | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) C_ ( ( A ^o x ) .o ( G ` x ) ) ) |
| 84 | eqid | |- OrdIso ( _E , ( G supp (/) ) ) = OrdIso ( _E , ( G supp (/) ) ) |
|
| 85 | 12 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> G e. S ) |
| 86 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 87 | 1 58 59 84 85 86 65 | cantnfle | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( A ^o x ) .o ( G ` x ) ) C_ ( ( A CNF B ) ` G ) ) |
| 88 | 13 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( A CNF B ) ` G ) = Z ) |
| 89 | 87 88 | sseqtrd | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( A ^o x ) .o ( G ` x ) ) C_ Z ) |
| 90 | 83 89 | sstrd | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) C_ Z ) |
| 91 | 41 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> Z e. ( A ^o X ) ) |
| 92 | 26 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o X ) e. On ) |
| 93 | ontr2 | |- ( ( ( A ^o x ) e. On /\ ( A ^o X ) e. On ) -> ( ( ( A ^o x ) C_ Z /\ Z e. ( A ^o X ) ) -> ( A ^o x ) e. ( A ^o X ) ) ) |
|
| 94 | 69 92 93 | syl2anc | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( ( ( A ^o x ) C_ Z /\ Z e. ( A ^o X ) ) -> ( A ^o x ) e. ( A ^o X ) ) ) |
| 95 | 90 91 94 | mp2and | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( A ^o x ) e. ( A ^o X ) ) |
| 96 | 24 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> X e. On ) |
| 97 | 54 | adantr | |- ( ( ph /\ x e. ( G supp (/) ) ) -> A e. ( On \ 2o ) ) |
| 98 | oeord | |- ( ( x e. On /\ X e. On /\ A e. ( On \ 2o ) ) -> ( x e. X <-> ( A ^o x ) e. ( A ^o X ) ) ) |
|
| 99 | 67 96 97 98 | syl3anc | |- ( ( ph /\ x e. ( G supp (/) ) ) -> ( x e. X <-> ( A ^o x ) e. ( A ^o X ) ) ) |
| 100 | 95 99 | mpbird | |- ( ( ph /\ x e. ( G supp (/) ) ) -> x e. X ) |
| 101 | 100 | ex | |- ( ph -> ( x e. ( G supp (/) ) -> x e. X ) ) |
| 102 | 101 | ssrdv | |- ( ph -> ( G supp (/) ) C_ X ) |
| 103 | 1 2 3 12 57 28 102 14 | cantnfp1 | |- ( ph -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
| 104 | 103 | simprd | |- ( ph -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
| 105 | 13 | oveq2d | |- ( ph -> ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) = ( ( ( A ^o X ) .o Y ) +o Z ) ) |
| 106 | 104 105 46 | 3eqtrd | |- ( ph -> ( ( A CNF B ) ` F ) = C ) |
| 107 | 1 2 3 | cantnff | |- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
| 108 | 107 | ffnd | |- ( ph -> ( A CNF B ) Fn S ) |
| 109 | 103 | simpld | |- ( ph -> F e. S ) |
| 110 | fnfvelrn | |- ( ( ( A CNF B ) Fn S /\ F e. S ) -> ( ( A CNF B ) ` F ) e. ran ( A CNF B ) ) |
|
| 111 | 108 109 110 | syl2anc | |- ( ph -> ( ( A CNF B ) ` F ) e. ran ( A CNF B ) ) |
| 112 | 106 111 | eqeltrrd | |- ( ph -> C e. ran ( A CNF B ) ) |