This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of Schloeder p. 8. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omword1 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( A .o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( B e. On -> Ord B ) |
|
| 2 | ordgt0ge1 | |- ( Ord B -> ( (/) e. B <-> 1o C_ B ) ) |
|
| 3 | 1 2 | syl | |- ( B e. On -> ( (/) e. B <-> 1o C_ B ) ) |
| 4 | 3 | adantl | |- ( ( A e. On /\ B e. On ) -> ( (/) e. B <-> 1o C_ B ) ) |
| 5 | 1on | |- 1o e. On |
|
| 6 | omwordi | |- ( ( 1o e. On /\ B e. On /\ A e. On ) -> ( 1o C_ B -> ( A .o 1o ) C_ ( A .o B ) ) ) |
|
| 7 | 5 6 | mp3an1 | |- ( ( B e. On /\ A e. On ) -> ( 1o C_ B -> ( A .o 1o ) C_ ( A .o B ) ) ) |
| 8 | 7 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( 1o C_ B -> ( A .o 1o ) C_ ( A .o B ) ) ) |
| 9 | om1 | |- ( A e. On -> ( A .o 1o ) = A ) |
|
| 10 | 9 | adantr | |- ( ( A e. On /\ B e. On ) -> ( A .o 1o ) = A ) |
| 11 | 10 | sseq1d | |- ( ( A e. On /\ B e. On ) -> ( ( A .o 1o ) C_ ( A .o B ) <-> A C_ ( A .o B ) ) ) |
| 12 | 8 11 | sylibd | |- ( ( A e. On /\ B e. On ) -> ( 1o C_ B -> A C_ ( A .o B ) ) ) |
| 13 | 4 12 | sylbid | |- ( ( A e. On /\ B e. On ) -> ( (/) e. B -> A C_ ( A .o B ) ) ) |
| 14 | 13 | imp | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. B ) -> A C_ ( A .o B ) ) |